Skip to main content
Log in

Upconversion luminescence enhancement of the composite films by coupling local surface plasmon effect and photonic crystals effect

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Noble metal surface plasmon resonance or photonic crystals (PCs) effect is a novel and effective method for improving upconversion luminescence (UCL). UCL can be effected by the size, thickness of the noble metal film and the photonic band gap (PBG) of the PCs. So it is important to improve UCL by coupling surface plasmons resonance (SPR) with PCs effect. In this work, the PCs/Ag/UC composite films were fabricated to improve the upconversion emission of NaGdF4:Er3+/Yb3+/Al3+ nanocrystals, and the influence of the Ag layer thickness on spectral properties was investigated. Studies reveal that the Ag layer thickness and morphology have a major impact on the Ag nanoparticles (NPs) plasma resonance and UCL intensity of NaGdF4:Er3+/Yb3+/Al3+ nanocrystals for PCs/Ag/UC composite films. The highest enhancement factors of the red and green emissions were found to be 43 and 42 under 980 nm excitation, respectively. That is attributed to the coupling effect of the Ag NPs local SPR and PCs Bragg reflection, the local electromagnetic field enhancement produced by the excitation wavelength overlapping with the photonic band gap and strong plasmon resonance band overlapping with emission wavelength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y. Ji, W. Xu, D. Li, D. Zhou, X. Chen, N. Ding, J. Li, N. Wang, X. Bai, H. Song, Semiconductor plasmon enhanced monolayer upconversion nanoparticles for high performance narrowband near-infrared photodetection. Nano Energy 61(6), 211–220 (2019)

    Article  Google Scholar 

  2. K. Park, M. Park, H.S. Jang, J.H. Park, J. Kim, Y. Cho, I.K. Han, D. Byun, H. Ko, Highly secure plasmonic encryption keys combined with upconversion luminescence nanocrystals. Adv. Funct. Mater. 28(21), 1800369 (2018)

    Article  Google Scholar 

  3. S.S. Mathilde, Z. Hu, D.O.L. Karmel, H. Xiang, G. Patrick, M. Michel, B. Laurent, A. Lionel, Z. Chen, Microscopic evidence of upconversion-induced near-infrared light harvest in hybrid perovskite solar cells. Acs Appl. Energy Mater. 1(8), 3537–3543 (2018)

    Article  Google Scholar 

  4. S. Xu, Y. Yu, Y. Gao, Y. Zhang, X. Li, J. Zhang, Y. Wang, B. Chen, Mesoporous silica coating NaYF4:Yb, Er@NaYF4 upconversion nanoparticles loaded with ruthenium(II) complex nanoparticles: Fluorometric sensing and cellular imaging of temperature by upconversion and of oxygen by downconversion. Microchim. Acta. 185(10), 454–464 (2018)

    Article  Google Scholar 

  5. P. Du, W. Ran, Y. Hou, L. Luo, W. Li, Eu3+activated NaGdF4 nanorods for near-ultraviolet light-triggered indoor illumination. ACS Appl. Nano Mater. 2(7), 4275–4285 (2019)

    Article  Google Scholar 

  6. J. Tang, P. Du, W. Li, L. Luo, Boosted thermometric performance in NaGdF4:Er3+/Yb3+ upconverting nanorods by Fe3+ ions doping for contactless nanothermometer based on thermally and non-thermally coupled levels. J Lumin. 224, 117296 (2020)

    Article  Google Scholar 

  7. J. Hu, R. Wang, R. Fan, F. Wang, H. Xiong, Z. Huang, L. Liu, H. Fu, Nanocomposites of Au nanorods and core-shell NaGdF4:Yb3+, Er3+@NaYF4 upconversion nanoparticles for temperature sensing. ACS Appl. Nano Mater. 3(10), 9679–9685 (2020)

    Article  Google Scholar 

  8. Q. Wang, C. Zhang, M. Liu, H. Ma, X. Wang, The synthesis of newly developed Li(1-x-y)NaxK yYF4:Yb3+/Er3+and its excellent upconversion properties. Opt. Mater. 108, 110164–110170 (2020)

    Article  Google Scholar 

  9. J. Xie, W. Hu, D. Tian, Y. Wei, E. Liang, Selective growth and upconversion photoluminescence of Y-based fluorides: from NaYF4:Yb/Er to YF3:Yb/Er crystals. Nanotechnology 31(50), 9 (2020)

    Article  Google Scholar 

  10. Z. Zhang, C. Huang, N. Li, J. Wei, Fabrication of multicolor Janus microbeads based on photonic crystals and upconversion nanoparticles. J. Colloid Interf. Sci. 592(14), 249–258 (2021)

    Article  ADS  Google Scholar 

  11. T. Gao, X. Zhu, X. Wu, B. Zhang, H. Liu, Selectively manipulating upconversion emission channels with tunable biological photonic crystals. J. Phys. Chem. C. 225(1), 732–739 (2021)

    Article  Google Scholar 

  12. J. Dong, W. Gao, Q. Han, Y. Wang, J. Qi, X. Yan, M. Sun, Plasmon-enhanced upconversion photoluminescence: mechanism and application. Rev. Phys. 4(1), 100026–100062 (2019)

    Article  Google Scholar 

  13. B. Shao, Z. Yang, J. Li, J. Yang, Y. Wang, J. Qiu, Z. Song, Upconversion emission enhancement by porous silver films with ultra-broad plasmon absorption. Opt. Mater. Express. 7(4), 1188–1197 (2017)

    Article  ADS  Google Scholar 

  14. H. Zhou, C. Wang, Y. Lai, J. Yu, S. Cheng, Plasmon-enhanced upconversion luminescence of the composite films through tunable ZnO spacer. Appl. Phys. A. 127(5), 315–321 (2021)

    Article  ADS  Google Scholar 

  15. E. Yablonovitch, T.J. Gmitter, Photonic band structure: The face-centered-cubic case. Phys. Rev. Lett. 63(18), 1950–1953 (1989)

    Article  ADS  Google Scholar 

  16. A. Mrabti, S. El-Jallal, G. Lévêque, A. Akjouj, Y. Pennec, B. Djafari-Rouhani, Combined photonic-plasmonic modes inside photonic crystal cavities. Plasmonics 10(6), 1359–1366 (2015)

    Article  Google Scholar 

  17. E.D. Martínez, A. Prado, M. Gonzalez, S. Anguiano, L. Tosi, L. Salazar Alarcon, H. Pstoriza, Integrating photoluminescent nanomaterials with photonic nanostructures. J. Lumin. 233(9), 117870 (2021)

    Article  Google Scholar 

  18. A. Das, K. Bae, W. Park, Enhancement of upconversion luminescence using photonic nanostructures. Nanophotonics 9(6), 1359–1371 (2020)

    Article  Google Scholar 

  19. Z. Yin, H. Li, W. Xu, S. Cui, D. Zhou, X. Chen, Y. Zhu, G. Qin, H. Song, Local field modulation induced three-order upconversion enhancement: combining surface plasmon effect and photonic crystal effect. Adv. Mater. 28(13), 2518–2525 (2016)

    Article  Google Scholar 

  20. G. Blasse, The physics of new luminescent materials. Mater. Chem. Phy. 16(3–4), 201–236 (1987)

    Article  Google Scholar 

  21. P. Ramasamy, P. Chandra, S. Rhee, J. Kim, Enhanced upconversion luminescence in NaGdF4:Yb, Er nanocrystals by Fe3+ doping and their application in bioimaging. Nanoscale 5(18), 8711–8717 (2013)

    Article  ADS  Google Scholar 

  22. M. Xia, D. Zhou, Y. Yang, Z. Yang, J. Qiu, Synthesis of ultrasmall hexagonal NaGdF4: Yb3+Er3+@NaGdF4:Yb3+@NaGdF4:Nd3+ active-core/active-shell/active-shell nanoparticles with enhanced upconversion luminescence. Ecs. J. Solid. State. Sci. Technol. 6(4), 41–46 (2017)

    Article  Google Scholar 

  23. X. Zhang, B. Li, M. Jiang, L. Zhang, H. Ma, Core-spacer-shell structured NaGdF4:Yb3+/Er3+@NaGdF4@Ag nanoparticles for plasmon-enhanced upconversion luminescence. Rsc. Adv. 6(43), 36528–36533 (2016)

    Article  ADS  Google Scholar 

  24. Z. Lu, Z. Dan, G. De, Self-assembly NaGdF4 nanoparticles: phase controlled synthesis, morphology evolution, and upconversion luminescence properties. Mater. Res. Express. 3(2), 025009–025018 (2016)

    Article  ADS  Google Scholar 

  25. P.A. Hiltner, I.M. Krieger, Diffraction of light by ordered suspensions. J. Phys. Chem. 73(7), 2386–2389 (1969)

    Article  Google Scholar 

  26. J. Liao, Z. Yang, S. Lai, B. Shao, J. Li, J. Qiu, Z. Song, Y. Yang, Upconversion emission enhancement of NaYF4:Yb, Er nanoparticles by coupling silver nanoparticle plasmons and photonic crystal effects. J. Phys. Chem. C. 118(31), 17992–17999 (2014)

    Article  Google Scholar 

  27. S.A. Maier, H.A. Atwater, Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys. 98(1), 11101–11110 (2005)

    Article  ADS  Google Scholar 

  28. V.N. Rai, A.K. Srivastava, C. Mukherjee, S.K. Deb, Localized surface plasmon resonance and refractive index sensitivity of vacuum-evaporated nanostructured gold thin films. Indian. J. Phys. 90(1), 107–116 (2016)

    Article  ADS  Google Scholar 

  29. H. Zhou, X. Wang, Y. Lai, S. Cheng, Q. Zheng, J. Yu, Upconversion improvement in KLaF4:Yb3+/Er3+ nanoparticles by doping Al3+ ions. Appl. Phys. A. 123(10), 301–306 (2017)

    Article  ADS  Google Scholar 

  30. P. Du, W. Ran, C. Wang, L. Luo, W. Li, Facile realization of boosted near-infrared-visible light driven photocatalytic activities of BiOF nanoparticles through simultaneously exploiting doping and upconversion strategy. Adv. Mater. Interfaces 8(17), 2100749 (2021)

    Article  Google Scholar 

  31. W. Park, D. Lu, S. Ahn, Plasmon enhancement of luminescence upconversion. Chem. Soc. Rev. 44(10), 2940–2962 (2015)

    Article  Google Scholar 

  32. L.A. Sweatlock, S.A. Maier, H.A. Atwater, Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles. Phys. Rev. B. 71, 235408 (2005)

    Article  ADS  Google Scholar 

  33. B.H. Bransden, C.J. Joachain, Physics of atoms and molecules, 2nd edn. (Addison-Wesley, Boston, 2003)

    Google Scholar 

  34. W. Xu, X. Chen, H. Song, Upconversion manipulation by local electromagnetic field. Nano Today 17, 54–78 (2017)

    Article  Google Scholar 

  35. V. Giannini, A.I. Fernández-Domínguez, S.C. Heck, S.A. Maier, Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. Chem. Rev. 111(6), 3888–3912 (2011)

    Article  Google Scholar 

  36. L. Liang, D.B.L. Teh, N.D. Dinh, W. Chen, Q. Chen, Y. Wu, S. Chowdhury, A. Yamanaka, T.C. Sum, C.H. Chen, Upconversion amplification through dielectric superlensing modulation. Nat. Commun. 10(1), 1391 (2019)

    Article  ADS  Google Scholar 

  37. D.N. Chigrin, D. Kumar, D. Cuma, G. von Plessen, Emission quenching of magnetic dipole transitions near a metal nanoparticle. ACS Photonics 3(1), 27–34 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Sciences Fundation of China (No. 62074036), the Nature Sciences Fundation of Fujian Province (No. 2021J01582 and 2019J01218), Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China (No.2021ZR145).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haifang Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Weng, X., Zou, J. et al. Upconversion luminescence enhancement of the composite films by coupling local surface plasmon effect and photonic crystals effect. Appl. Phys. A 128, 370 (2022). https://doi.org/10.1007/s00339-022-05462-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05462-8

Keywords

Navigation