Skip to main content
Log in

Influence of antimony substitution on structural, magnetic and optical properties of cadmium spinel ferrite

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this present work, antimony-substituted cadmium ferrites with formula CdSbxFe2−xO4 (x = 0.1, 0.2, 0.3, 0.4, 0.5) have been synthesized using the ceramic route. The structural, surface morphological, magnetic and optical properties have been investigated using X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy, vibrating sample magnetometer and UV–visible spectroscopy, respectively. XRD confirms the single cubic spinel structure of antimony-substituted cadmium ferrites. The lattice parameter increases due to the replacement of Fe+3 (0.64 Å) ions with Sb+3 (0.76 Å). FTIR gives the main vibrational band that lies in the range of 400–600 cm−1 which might be due to the stretching vibration of oxygen and metal ions, confirming the formation of spinel ferrite. The saturation magnetization decreases and coercivity increases as the concentration of non-magnetic antimony ion increases. The optical band gap energy decreases with increasing the concentration of antimony ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. A.B. Gadkari, T.J. Shinde, P.N. Vasambekar, Structural analysis of Y+3-doped Mg cd ferrites prepared by oxalate co-precipitation method. Mater. Chem. Phys. 114, 505 (2009)

    Article  Google Scholar 

  2. P. Rabia, K.K. Sharma, P. Kaur, R.K. Kotnala, Effect of Al3+ subtitution on structural cation ditribution, electrical and magnetic properties of CoFe2O4. J. Phys. Chem. Solids. 75, 558–569 (2014)

    Article  ADS  Google Scholar 

  3. R. Srivastava, B.C. Yadav, Synthesis techniques, and applications as sensors. Int. J. Green Nanotechnol. Ferrite Mater. 4, 141–154 (2012)

    Article  Google Scholar 

  4. C.J. Brinker, G.W. Scherer, The physics and the chemistry of sol gel processing, in Sol–Gel Science, ed. by G.W. Scherer (Academic Press, London, 1990)

    Google Scholar 

  5. L. Gama, A.P. Diniz, A.C.F.M. Costa, S.M. Bezende, A. Azevedo, D.R. Comejo, Magnetic materials and their application. Phys. B: Conden. Matter 384, 1–2 (2006)

    Article  Google Scholar 

  6. S.E. Jcoba, S. Dukalde, H.R. Bertorella, Rare earth influence on the structural and magnetic properties of NiZn ferrites. J. Magn. Magn. Mater. 2253, 272 (2004)

    Google Scholar 

  7. S. Jan, Magnetic Techniques for the Treatment of Materials (Springer, Berlin, 2004)

    Google Scholar 

  8. A. Lloyd, Applications of hard and soft ferrites. Key Eng. Mater. 122–124, 175–184 (1996)

    Article  Google Scholar 

  9. B. Kulkarni Akshay, N.M. Shridhar, Variation in structural and mechanical properties of Cd-DOPED Co–Zn ferrites. Mater. Sci. Energy Technol. 2, 455–462 (2019)

    Google Scholar 

  10. P.K. Nayak, Synthesis and characterization of cadmium ferrite. J. Mater. Chem. Phys. 112, 24–26 (2008)

    Article  Google Scholar 

  11. B.H. Devmunde, A.V. Raut, S.D. Birajdar, S.J. Shukla, D.R. Shengule, K.M.J. Jadhav, Structural, electrical, dielectric, and magnetic properties of Cd+2 substituted nickel ferrite nanoparticles. J. Nanopart. 2016, 8 (2016)

    Article  Google Scholar 

  12. E. Pervaiz, I.H. Gul, Hydrothermal synthesis, structural and electrical properties of antimony (Sb3+) substituted nickel ferrites. J. Supercond. Nov. Magn. 27, 881–890 (2014)

    Article  Google Scholar 

  13. E. Pervaiz, I.H. Gul, Enhancement of electrical properties due to Cr3+ substitution in Co-ferrite nanoparticles synthesized by two chemical techniques. J. Magn. Magn. Mater. 324, 3695–3703 (2012)

    Article  ADS  Google Scholar 

  14. S. Xavier, S. Thankachan, B.P. Jacob, E.M. Mohammed, Cation distribution and magnetic properties of nanocrystalline gallium substituted cobalt ferrite. J. Alloys Compd. 615, 181–187 (2014)

    Article  Google Scholar 

  15. Z. Sam, L. Lin, K. Ashok, Materials Characterization Techniques (Taylor & Francis, London, 2008)

    Google Scholar 

  16. B. Chethan, Y.T. Ravikiran, S.C. Vijayakumari, H.G. Rajprakash, S. Thomas, Nickel Substituted cadmium ferrite as room temperature operable humidity sensor. Sensors Actuators A Phys. 280, 466–474 (2018)

    Article  Google Scholar 

  17. A.K. Sadoon, Study of the effect of CeO2 on the structural properties of cadmium ferrite. Energy Proc. 156, 561–567 (2019)

    Article  Google Scholar 

  18. M. Shaki, U. Inayat, M.I. Arshad, N.R. Khalid, N.H. Tariq, Influence of zinc and cadmium co-doping on optical and magnetic properties of cobalt ferrites. Ceram. Int. (2019). https://doi.org/10.1016/j.ceramint.2019.11.280

    Article  Google Scholar 

  19. K. Nogi, M. Hosokawa, M. Naito, T. Yokoyama, Nanoparticle Technology Handbook (Elsevier, Amsterdam, 2012)

    Google Scholar 

  20. A.K. Nandawar, N.N. Sarkar, D.K. Sahu, Effect of Ni+2 substitution on structural and electrical behaviour of nano-sized cadmium. Mater. Today Proc. 5, 22669–22674 (2018)

    Article  Google Scholar 

  21. F. Zamani, A.H. Taghvaei, Characterization and magnetic properties of nanocrystalline Mg1−xCdxFe2O4 (x  =  0.0–0.8) ferrites synthesized by glycine-nitrate autocombustion method. Ceram. Int. 44, 17209–17217 (2018)

    Article  Google Scholar 

  22. S.E. Shirsath, B.G. Toksha, K.M. Jadhav, Mater. Chem. Phys. 117, 163–168 (2009)

    Article  Google Scholar 

  23. N. Mahmoud, Optical and magnetic properties of monophasic cadmium ferrite (CdF2O4) nanostructure prepared by thermal treatment method. J. Magn. Mater. 392, 107–113 (2015)

    Article  Google Scholar 

  24. R. Topkaya, Y. Yafet, Ferrites Magn. Phys. 90, 29 (2016)

    Google Scholar 

  25. M.V.K. Mehar, A. Simhadri, DC electrical properties of antimony substituted lithium ferrites. Int. J. Res. Appl. Sci. Eng. Technol. 3, 2321–9653 (2015)

    Google Scholar 

  26. M. Yokoyama, E. Ohta, Magnetic properties of ultrafine particles and bulk material of cadmium ferrite. J. Magn. Magn. Mater. 183, 173–180 (1998)

    Article  ADS  Google Scholar 

  27. S. Singhal, K. Chandra, Cation distribution and magnetic properties in chromium-substituted nickel ferrites prepared using aerosol route. J. Solid State Chem. 180, 296–300 (2007)

    Article  ADS  Google Scholar 

  28. M. Su, K. Shih, L. Kong, Stabilizing cadmium into aluminate and ferrite structures: effectiveness and leaching behavior. J. Environ. Manag. 187, 340–346 (2017)

    Article  Google Scholar 

  29. D.S. Mathew, S.J. Ruey, An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem. Eng. J. 129, 51–65 (2007)

    Article  Google Scholar 

  30. A.M. Fox, Optical Properties of Solids (Oxford University Press, Oxford, 2001), p. 304

    Google Scholar 

  31. A. Datar, B. Ray, S. Datar, V. Mathe, Magnetic force microscopic analysis and the magnetoelectric sensor of PLZT-Spinel ferrite composite films. J. Magn. Magn. Mater. 489, 165373 (2019)

    Article  Google Scholar 

  32. S. Jaiswal, J. Kumar, Solid State Sci. 14, 1157–1168 (2012)

    Article  ADS  Google Scholar 

  33. O. Caltun, High magnetostrictive doped cobalt ferrite. J. Optoelectron. Adv. Mater. 9(4), 1158 (2007)

    Google Scholar 

  34. A.S. Ponce, High coercivity induced by mechanical milling in cobalt ferrite powders. J. Magn. Magn. Mater. 344, 182–187 (2013)

    Article  ADS  Google Scholar 

  35. S. Sonal, Investigation of structural, magnetic, electrical and optical properties of chromium substituted cobalt ferrites (CoCrxFe2−xO4, 0 ⩽ x ⩽ 1) synthesized using sol gel auto combustion method. J. Mol. Struct. 1012, 182–188 (2012)

    Article  ADS  Google Scholar 

  36. M.N. Ashiq, M.F. Ehsan, Synthesis, structural and electrical characterization of Sb+3 substituted spinel nickel ferrite (NiSbxFe2−xO4) nanoparticles by reverse micelle technique. J. Alloys Compd. 509, 5119–5126 (2011)

    Article  Google Scholar 

  37. C.S. Lakshmi, C.S.L.N. Sridhar, Structural, magnetic and dielectric investigations in antimony doped nano-phased nickle-zinc ferrites. J. Phys. B 459, 97–104 (2015)

    Article  Google Scholar 

  38. M. Kuppan, S. Kaleemulla, N.M. Rao, N.S. Krishna, M.R. Begam, M. Shobana, Structural and magnetic properties of Ni doped SnO2. Adv. Condens. Matter Phys. 2014, 1–5 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Safia Anjum.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anjum, S., Ilayas, T. & Mustafa, Z. Influence of antimony substitution on structural, magnetic and optical properties of cadmium spinel ferrite. Appl. Phys. A 126, 227 (2020). https://doi.org/10.1007/s00339-020-3407-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3407-x

Keywords

Navigation