Skip to main content
Log in

Hydrothermal Synthesis, Structural and Electrical Properties of Antimony (Sb3+) Substituted Nickel Ferrites

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Antimony (Sb3+) doped nickel ferrites have been synthesized by hydrothermal route using an autoclave at 160 C for 12 hours. Pure spinel phase NiSb x Fe2−x O4 (x=0.0 to 0.1) with step increment of 0.035 has been prepared by sintering the precursor samples at 500 C. Structural studies have been performed using X-ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR). Lattice parameter and X-ray density found to increase with increase in the antimony concentration. Average crystallite size lies in the range of 14 to 24 nm ± 2 nm. Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) have been used to characterize the morphology and sizes of nanoparticles. Electrical properties were analyzed by measuring DC-electrical resistivity, complex dielectric permittivity, AC conductivity and complex electrical modulus analysis. DC resistivity of nickel ferrites decreases due to the substitution of antimony from 6.7×108 to 3.4×107 Ω-cm. Dielectric permittivity and losses were studied in the frequency range of 20 Hz–5 MHz and found to increase due to addition of Sb3+ in nickel nanoferrites at room temperature. High dielectric permittivity and conductivity made this material a compatible option for single-layered and multilayered chip inductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Harris, V.G.: IEEE Trans. Magn. 48, 1075–1104 (2012)

    Article  ADS  Google Scholar 

  2. Muthu, K.S., Lakshminarasimhan, N.: Ceram. Int. 39, 2309–2315 (2013)

    Article  Google Scholar 

  3. Ping, L.C., Wei, L.M., Zhong, C., Juan-Ru, H., Yi-Ling, T., Tong, L., Wei-Bo, M.: J. Mater. Sci. 42, 6133–6138 (2007)

    Article  ADS  Google Scholar 

  4. Shinde, T.J., Gadkari, A.B., Vasambekar, P.N.: Mater. Chem. Phys. 111, 87–91 (2008)

    Article  Google Scholar 

  5. Barati, M.R.: J. Sol-Gel Sci. Technol. 52, 171–178 (2009)

    Article  Google Scholar 

  6. Uskokovi, V., Drofenik, M.: Colloids Surf. A, Physicochem. Eng. Asp. 266, 168–174 (2005)

    Article  Google Scholar 

  7. Purushotham, Y., Chandel, J.S., Sud, S.P., Babbar, V.K., Reddy, K.V., Reddy, P.V.: Mater. Sci. Eng. B 34, 67–73 (1995)

    Article  Google Scholar 

  8. Gubbalaa, S., Nathania, H., Koizol, K., Misra, R.D.K.: Physica B 348, 317–328 (2004)

    Article  ADS  Google Scholar 

  9. Wang, J., Ren, F., Yi, R., Yan, A., Qiu, G., Liu, X.: J. Alloys Compd. 479, 791–796 (2009)

    Article  Google Scholar 

  10. Pervaiz, E., Gul, I.H.: J. Supercond. Nov. Magn. 26, 415–424 (2013)

    Article  Google Scholar 

  11. Morrison, S.A., Cahill, C.L., Carpenter, E.E., Calvin, S., Swaminathan, R., McHenry, M.E., Harris, V.G.: J. Appl. Phys. 95, 6392–6395 (2004)

    Article  ADS  Google Scholar 

  12. Gul, I.H., Pervaiz, E.: Mater. Res. Bull. 47, 1353–1361 (2012)

    Article  Google Scholar 

  13. Mathe, V.L., Kamble, R.B.: Mater. Res. Bull. 43, 2160–2165 (2008)

    Article  Google Scholar 

  14. Ravinder, D., Alivelu, T.M.: Mater. Lett. 41, 254–260 (1999)

    Article  Google Scholar 

  15. Shinde, T.J., Gadkari, A.B., Vasambekar, P.N.: J. Alloys Compd. 513, 80–85 (2012)

    Article  Google Scholar 

  16. Kadam, A.A., Shinde, S.S., Yadav, S.P., Patil, P.S., Rajpure, K.Y.: J. Magn. Magn. Mater. 329, 59–64 (2013)

    Article  ADS  Google Scholar 

  17. Ramirez, A.P., Subramanian, M.A., Gardel, M., Blumberg, G., Li, D., Vogt, T., Shapiro, S.M.: Solid State Commun. 115, 217–220 (2000)

    Article  ADS  Google Scholar 

  18. Rao, K.V., Sunandana, C.S.: J. Phys. Chem. Solids 69, 87–96 (2008)

    Article  ADS  Google Scholar 

  19. Molak, A., Paluch, M., Pawlus, S., Klimontko, J., Ujma, Z., Gruszka, I.: J. Phys. D: Appl. Phys. 38, 1450–1460 (2005)

    Article  ADS  Google Scholar 

  20. Cullity, B.D.: Elements of X-ray Diffraction. Addison-Wisely, London (1978), p. 102

    Google Scholar 

  21. Cojocarius, A.M., Soroceanu, M., Hrib, L., Nica, V., Caltun, O.F.: Mater. Chem. Phys. 135, 728–732 (2012)

    Article  Google Scholar 

  22. Gul, I.H., Maqsood, A.: J. Magn. Magn. Mater. 316, 13–18 (2007)

    Article  ADS  Google Scholar 

  23. Khan, M.A., Islam, M.U., Ishaque, M., Rahman, I.Z.: Ceram. Int. 37, 2519–2526 (2011)

    Article  Google Scholar 

  24. Patange, S.M., Shirsath, S.E., Lohar, K.S., Jadhav, S.S., Kulkarni, N., Jadhav, K.M.: Physica B 406, 663–668 (2011)

    Article  ADS  Google Scholar 

  25. Xiang, S., Yan-xin, W., Xiang, Y., Yong, X., Jian-feng, Z., Pei-duo, T.: Trans. Nonferr. Met. Soc. China 19, 1588–1592 (2009)

    Article  Google Scholar 

  26. Abo El Ata, A.M., Attia, S.M., Meaz, T.M.: Solid State Sci. 6, 61–69 (2004)

    Article  ADS  Google Scholar 

  27. Mohamed, R.M., Rashad, M.M., Haraz, F.A., Sigmund, W.: J. Magn. Magn. Mater. 322, 2058–2065 (2010)

    Article  ADS  Google Scholar 

  28. Batoo, K.M., Kumar, S., Lee, C.G., Alimuddin: Curr. Appl. Phys. 9, 1397–1406 (2009)

    Article  ADS  Google Scholar 

  29. Batto, K.M., Alimuddin: Physica B 406, 382–391 (2011)

    Article  Google Scholar 

  30. Liu, J., Duan, C.G., Yin, W.G., Mei, W.N., Smith, R.W., Hardy, J.R.: J. Chem. Phys. 119, 2812–2817 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

The authors would like to acknowledge TWAS, Italy, Higher Education Commission (HEC) Islamabad Pakistan project No. 1326, for providing financial support for this work, and the Pakistan Science Foundation (PSF) project No. 147.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. H. Gul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pervaiz, E., Gul, I.H. & Habib, A. Hydrothermal Synthesis, Structural and Electrical Properties of Antimony (Sb3+) Substituted Nickel Ferrites. J Supercond Nov Magn 27, 881–890 (2014). https://doi.org/10.1007/s10948-013-2364-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-013-2364-4

Keywords

Navigation