Skip to main content
Log in

Manufacturing of cellulose-based paper: dynamic water absorption before and after fiber modifications with hydrophobic agents

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Absorption of liquid or vapor water in paper designed for conversion processes is a critical phenomenon. In particular, the dimensional stability of the paper as the water content changes is crucial for the success of all the conversion processes, including copying and printing. Appropriate chemical treatments of the fibers can limit the phenomena of water absorption, allowing a better workability of the paper substrates. In the present study, moisture absorption tests were conducted under isothermal conditions on untreated papers and treated by coatings with silane, organo-siloxane and silicone agents, as well as with polyelectrolytes using layer-by-layer techniques. The treated and untreated papers were tested by changing the relative humidity between 0 and 80% relative humidity. The Guggenheim–Anderson–de Boer model was used to study moisture absorption isotherms, showing the increase in the dimensional stability of the papers after the chemical treatments of the fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Alam, N. Islam, Study on water sorption isotherm of summer onion. Bangladesh J. Agric. Resour. 40(1), 35–51 (2015)

    Google Scholar 

  2. R.B. Anderson, Modification of the B.E.T. equation, J. Am. Chem. Soc. 68, 686–691 (1946)

  3. S. Antonsson, P. Makela, C. Fellers, M. Lindstrom, Comparison of the physical properties between hardwood and softwood pulps. Nord. Pulp Pap. Res. J. 24(4), 409–414 (2009)

    Google Scholar 

  4. O. Arslan, Z. Aytac, T. Uyar, Superhydrophobic, hybrid, electrospun cellulose acetate nanofibrous mats for oil/water separation by tailored surface modification. ACS Appl. Mater. Interfaces. 8(30), 19747–19754 (2016)

    Google Scholar 

  5. C. Brandon, Dimensional Stability in Pulp and Paper Chemistry and Chemical Technology, vol. 3 (Wiley Inc., New York City, 1980)

    Google Scholar 

  6. S. Brauner, The Absorption of Gasses and Vapors, vol. 1 (Oxford University Press, Oxford, 1943)

    Google Scholar 

  7. W. Brecht, Beating and hygrostability of paper, in Fundamentals of Papermaking Fibres. Beating and Hygrostability of Paper, ed. by F. Bolam (L. B. Association, A cura di, Cambridge, UK, 1958), pp. 241–262

  8. S. Brunauer, P. Emmett, E. Teller, Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938)

    ADS  Google Scholar 

  9. L. Chen, A. Geisser, E. Bonaccurso, K. Zhang, Transparent slippery surfaces made with sustainable porous cellulose lauroyl ester films. ACS Appl. Mater. Interfaces. 6(9), 6969–6976 (2014)

    Google Scholar 

  10. Y. Chung, P.-K. Pak, Effect of crosslinking on dimensional stability and dyeability of Korean traditional paper. Text. Sci. Eng. 43(2), 95–100 (2006)

    Google Scholar 

  11. W. Cohen, A.J. Stamm, D.J. Fahey, Dimensional stabilization of paper by catalyzed heat-treatment. Tappi J. 42, 904–908 (1959)

    Google Scholar 

  12. J.H. de Boer, The Dynamical Character of Adsorption (Clarendon Press, Oxford, UK 1953)

  13. G. Decher, Fuzzy nano-assemblies: toward layered polymeric multicomposites. Science 277(5330), 1232–1237 (1997)

    Google Scholar 

  14. S. Elyasi, H. Torshizi, Concentration of anionic starch solution in paper surface sizing on physical and strength properties of recycled paper. Iran. J. Wood Pap. Ind. 7(4), 487–497 (2017)

    Google Scholar 

  15. M. Eriksson, A. Torgnysdotter, L. Wagberg, Surface modification of wood fibers using the polyelectrolyte multilayer technique: effects on fiber joint and paper strength properties. Ind. Eng. Chem. Res. 45(15), 5279–5286 (2006)

    Google Scholar 

  16. A. Figueiredo, S. Magina, D. Evtuguin, E. Cardoso, J. Ferra, P. Cruz, Factors affecting the dimensional stability of decorative papers under moistening. BioResources 11(1), 2020–2029 (2016)

    Google Scholar 

  17. C. Gaiolas, A. Costa, M. Nunes, M. Silva, M. Belgacem, Grafting of paper by silane coupling agents using. Plasma Processes Polym. 5(5), 444–452 (2008)

    Google Scholar 

  18. W. Gallay, Stability of dimensions and form of paper. Tappi J. 56(11), 54–63 (1973)

    Google Scholar 

  19. A. Geissler, L. Chen, K. Zhang, E. Bonaccurso, M. Biesalski, Superhydrophobic surfaces fabricated from nano- and microstructured cellulose stearoyl esters. Chem. Commun. 49, 4962–4964 (2013)

    Google Scholar 

  20. M. Gimaker, Influence of fibre modification on moisture sorption and the mechanical properties of paper (KTH Royal Institute of Technology, Department of Fibre and Polymer Technology, Division of Fibre Technology, Stockholm, Sweden, 2010)

  21. V. Gribova, R. Auzely-Velty, C. Picart, Polyelectrolyte multilayer assemblies on materials surfaces: from cell adhesion to tissue engineering. Chem. Mater. 24(5), 854–869 (2012)

    Google Scholar 

  22. E.A. Guggenheim, Applications of Statistical Mechanics, (Clarendon Press, Oxford, UK, 1966)

  23. H. Gupta, S. Chatterjee, Parallel diffusion of moisture in paper. Part 1: steady-state conditions. Ind. Eng. Chem. Res. 42(25), 6582–6592 (2003)

    Google Scholar 

  24. H. Gupta, S. Chatterjee, Parallel diffusion of moisture in paper. Part 2: transient conditions. Ind. Eng. Chem. Res. 42(25), 6593–6600 (2003)

    Google Scholar 

  25. A. Horvath, R. Pelton, P. Larsson, L. Wagberg, Effect of cross-linking fiber joints on the tensile and fracture. Ind. Eng. Chem. Res. 49(14), 6422–6431 (2010)

    Google Scholar 

  26. A. Khan, Theory of adsorption equilibria analysis based on general equilibrium constant expression. Turk. J. Chem. 36, 219–231 (2012)

    Google Scholar 

  27. A. Khazraji, R. Sylvain, Interaction effects between cellulose and water in nanocrystalline and amorphous regions: a novel approach using molecular modeling. J. Nanomater. 2013, @@409676@@ (2013)

    Google Scholar 

  28. G. Laroque, The extension of paper by absorbed water vapor. Pulp Pap. Mag. Can. 37, 199–209 (1936)

    Google Scholar 

  29. P. Larsson, L. Wågberg, Influence of fibre–fibre joint properties on the dimensional stability of paper. Cellulose 15(4), 515–525 (2008)

    Google Scholar 

  30. P. Larsson, M. Gimaker, L. Wagberg, The influence of periodate oxidation on the moisture sorptivity and dimensional stability of paper. Cellulose 15, 837–848 (2008)

    Google Scholar 

  31. P. Larsson, M. Hoc, L. Wagberg, The influence of grammage, moisture content, fibre furnish and chemical modifications on the hygro-and hydro-expansion of paper, in 14th Fundamental Research Symposium on Advances in Pulp and Paper Research (St Annes Coll, Oxford, England, 2009) pp. 355–388

  32. M. Lindner, Factors affecting the hygroexpansion of paper. J. Mater. Sci. 53, 1–26 (2018)

    ADS  Google Scholar 

  33. R. Lingstrom, S. Notley, L. Wagberg, Wettability changes in the formation of polymeric multilayers on cellulose fibres and their influence on wet adhesion. J. Colloid Interface Sci. 314(1), 1–9 (2007)

    ADS  Google Scholar 

  34. V. Lovikka, L. Rautkari, T. Maloney, Changes in the hygroscopic behavior of cellulose due to variations in relative humidity. Cellulose 25(1), 87–104 (2018)

    Google Scholar 

  35. H. Modaressi, G. Garnier, Mechanism of wetting and absorption of water droplets on sized paper: effects of chemical and physical heterogeneity. Langmuir 18(3), 642–649 (2002)

    Google Scholar 

  36. W. Obeid, A. Alliche, G. Mounajed, Identification of the physical parameters used in the thermo-hygro-mechanical model. Transp. Porous Media 45, 215–239 (2001)

    MATH  Google Scholar 

  37. S. Pekka, Studies of water transport in paper during short contact (Laboratory of Paper Chemistry, Department of Chemical Engineering, Abo Akademi, Turku, Finland, 1988)

    Google Scholar 

  38. I. Pulkkinen, J. Fiskari, V. Alopaeus (2009), The effect of sample size and shape on the hygroexpansion coefficient—a study made with advanced methods for hygroexpansion measurement. Technical Association of the Pulp and Paper Industry of Southern Africa (2009), pp. 26–33

  39. B. Ramarao, A. Massoquete, S. Lavrykov, S. Ramaswamy, Moisture diffusion inside paper materials in the hygroscopic range and characteristics of diffusivity parameters. Dry. Technol. 10(10), 2007–2056 (2003)

    Google Scholar 

  40. W. Sampson, J. Yamamoto, The drying shrinkage of cellulosic fibres and isotropic paper sheets. J. Mater. Sci. 46(2), 541–547 (2011)

    ADS  Google Scholar 

  41. A. Singha, R. Rana, Effect of pressure induced graft copolymerization on the physico-chemical properties of bio-fibers. BioResources 5(2), 1055–1073 (2010)

    Google Scholar 

  42. J. Songok, P. Salminen, M. Toivakka, Temperature effects on dynamic water absorption into paper. J. Colloid Interface Sci. 418, 373–377 (2014)

    ADS  Google Scholar 

  43. A. Stamm, Dimensional stabilisation of wood by catalysed heat treatment and crosslinking with formaldehyde. Tappi J. 42(1), 39–44 (1959)

    Google Scholar 

  44. Z. Tang, H. Li, D. Hess, V. Breedveld, Effect of chain length on the wetting properties of alkyltrichlorosilane coated cellulose-based paper. Cellulose 23, 1401–1413 (2016)

    Google Scholar 

  45. A. Tejado, M. Antal, X. Liu, T. van de Ven, Wet cross-linking of cellulose fibers via a bioconjugation reaction. Ind. Eng. Chem. Res. 50(10), 5907–5913 (2011)

    Google Scholar 

  46. D. Topgard, O. Soderman, Diffusion of water absorbed in cellulose fibers studied with 1H-NMR. Langmuir 17(9), 2694–2702 (2001)

    Google Scholar 

  47. B. Twomey, D. Dowling, G. Byrne, L. O’Neill, L. O’Hare, Properties of siloxane coatings deposited in a reel-to-reel atmospheric pressure plasma system. Plasma Processes Polym. 4(S1), S450–S454 (2007)

    Google Scholar 

  48. T. Uesaka, I. Kodaka, S. Okushima, R. Fukuchi, History-dependent dimensional stability of paper. Rheol. Acta 28(3), 238–245 (1989)

    Google Scholar 

  49. R. Villalobos, P. Hernandez, E. Teller, Effect of surfactants on water sorption and barrier properties of hydroxypropyl methylcellulose films. Food Hydrocolloids 20, 502–509 (2006)

    Google Scholar 

  50. L. Wagberg, S. Forsberg, A. Johansson, P. Juntti, Engineering of fibre surface properties by application of the polyelectrolyte multilayer concept. Part I: modification of paper strength. J. Pulp Pap. Sci. 28(7), 222–228 (2002)

    Google Scholar 

  51. R. Weatherwax, D. Caulfield, The pore structure of papers wet stiffened by formaldehyde crosslinking: I. Results from the water isotherm. J. Colloid Interface Sci. 67(3), 498–505 (1978)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Barletta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadzadeh, A., Barletta, M. & Gisario, A. Manufacturing of cellulose-based paper: dynamic water absorption before and after fiber modifications with hydrophobic agents. Appl. Phys. A 126, 383 (2020). https://doi.org/10.1007/s00339-020-03577-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03577-4

Keywords

Navigation