Skip to main content
Log in

A comparison of the characteristics of nanosecond, picosecond and femtosecond lasers generated Ag, TiO2 and Au nanoparticles in deionised water

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Although there have been large quantities of published work in laser generation of nanoparticles, it is still unclear on the comparative role of laser wavelengths and pulse widths in controlling the nanoparticle sizes, morphology and production rate. In this investigation, Ag, Au and TiO2 nanoparticles were synthesised by nanosecond (λ = 532 nm, τ = 5 ns), picosecond (λ = 1064 nm, τ = 10 ps) and femtosecond (λ = 800 nm, τ = <100 fs) pulse lasers in deionised water. They are compared, in terms of their optical absorption spectra, morphology, size distribution and production rates, characterised by UV–Vis spectroscopy and transmission electron microscopy. The ablation rates of both Ag and Ti samples were shown as a function of laser pulse energy and water level above the samples. The average size of nanoparticles (10–50 nm) was found to be smaller for the shorter wavelength (532 nm) nanosecond pulsed laser compared with those of picosecond and femtosecond lasers, demonstrating a more dominating role of laser wavelength than pulse width in particle size control. The ps laser generated more spherical Ag nanoparticles than those with the ns and fs lasers. Under the same laser processing conditions, Au nanoparticles are smaller than Ag and TiO2, with the latter, the largest. The nanoparticle production rate is relatively independent upon laser types, wavelengths and pulse lengths, but largely determined by the laser fluence and energy deposited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. X. Luo, A. Morrin, A.J. Killard, M.R. Smyth, Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis 18(4), 319–326 (2006)

    Article  Google Scholar 

  2. O.V. Salata, Applications of nanoparticles in biology and medicine. J. Nanobiotechnology 2(1), 3 (2004)

    Article  Google Scholar 

  3. D.K. Tiwari, J. Behari, P. Sen, Application of nanoparticles in waste water treatment. World Appl. Sci. J. 3(3), 17 (2008)

    Google Scholar 

  4. S. Sabir, M. Arshad, S.K. Chaudhari, Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications. Sci. World J. 2014, 8 (2014)

    Article  Google Scholar 

  5. M.G. Guzmán, J. Dille, S. Godet, Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity. Int. J. Chem. Biomol. Eng. 2(3), 104–111 (2009)

    Google Scholar 

  6. A. Essaidi, M. Chakif, B. Schöps, A. Aumman, S. Xiao, C. Esen, A. Ostendorf, Size control of gold nanoparticles during laser ablation in liquids with different functional molecules. Molecules 1(C2), C3 (2013)

    Google Scholar 

  7. H. Kobayashi, P. Chewchinda, H. Ohtani, O. Odawara, H. Wada, Effects of laser energy density on silicon nanoparticles produced using laser ablation in liquid. J. Phys. Conf. Ser. (IOP Publishing, 2013)

  8. F. Ghanbary, A. Jafarian, Preparation and photocatalytic properties of silver doped titanium dioxide nanoparticles and using artificial neural network for modeling of photocatalytic activity. Aust. J. Basic Appl. Sci. 5(12), 9 (2011)

    Google Scholar 

  9. J.-Y. Oh, S.-C. Lim, S.D. Ahn, S.S. Lee, K.-I. Cho, J.B. Koo, R. Choi, M. Hasan, Facile one-step synthesis of magnesium-doped ZnO nanoparticles: optical properties and their device applications. J. Phys. D Appl. Phys. 46(28), 285101 (2013)

    Article  Google Scholar 

  10. R. Kuladeep, L. Jyothi, K.S. Alee, K. Deepak, D.N. Rao, Laser-assisted synthesis of Au–Ag alloy nanoparticles with tunable surface plasmon resonance frequency. Opt. Mater. Express 2(2), 161–172 (2012)

    Article  Google Scholar 

  11. S.-H. Tsai, Y.-H. Liu, P.-L. Wu, C.-S. Yeh, Preparation of Au–Ag–Pd trimetallic nanoparticles and their application as catalysts. J. Mater. Chem. 13(5), 978–980 (2003)

    Article  Google Scholar 

  12. S.W. Kang, Y.W. Lee, Y. Park, B.-S. Choi, J.W. Hong, K.-H. Park, S.W. Han, One-pot synthesis of trimetallic Au@ PdPt core–shell nanoparticles with high catalytic performance. ACS Nano 7(9), 7945–7955 (2013)

    Article  Google Scholar 

  13. E. Moncada, R. Quijada, J. Retuert, Nanoparticles prepared by the sol–gel method and their use in the formation of nanocomposites with polypropylene. Nanotechnology 18(33), 335606 (2007)

    Article  Google Scholar 

  14. K. Nakaso, B. Han, K.H. Ahn, M. Choi, K. Okuyama, Synthesis of non-agglomerated nanoparticles by an electrospray assisted chemical vapor deposition (ES-CVD) method. J. Aerosol Sci. 34(7), 869–881 (2003)

    Article  Google Scholar 

  15. N.S. Tabrizi, M. Ullmann, V. Vons, U. Lafont, A. Schmidt-Ott, Generation of nanoparticles by spark discharge. J. Nanopart. Res. 11(2), 315–332 (2009)

    Article  Google Scholar 

  16. D. Amans, C. Malaterre, M. Diouf, C. Mancini, F. Chaput, G. Ledoux, G. Breton, Y. Guillin, C. Dujardin, K. Masenelli-Varlot, Synthesis of oxide nanoparticles by pulsed laser ablation in liquids containing a complexing molecule: impact on size distributions and prepared phases. J. Phys. Chem. C 115(12), 5131–5139 (2011)

    Article  Google Scholar 

  17. B. Fei, Z. Xin-Zheng, W. Zhen-Hua, W. Qiang, H. Hao, X. Jing-Jun, Preparation and size characterization of silver nanoparticles produced by femtosecond laser ablation in water. Chin. Phys. Lett. 25(12), 4463 (2008)

    Article  ADS  Google Scholar 

  18. I.A. Sukhov, G.A. Shafeev, V.V. Voronov, M. Sygletou, E. Stratakis, C. Fotakis, Generation of nanoparticles of bronze and brass by laser ablation in liquid. Appl. Surf. Sci. 302, 79–82 (2014)

    Article  ADS  Google Scholar 

  19. S. Wackerow, A. Abdolvand, Generation of silver nanoparticles with controlled size and spatial distribution by pulsed laser irradiation of silver ion-doped glass. Opt. Express 22(5), 5076–5085 (2014)

    Article  ADS  Google Scholar 

  20. S.I. Dolgaev, A.V. Simakin, V.V. Voronov, G.A. Shafeev, F. Bozon-Verduraz, Nanoparticles produced by laser ablation of solids in liquid environment. Appl. Surf. Sci. 186(1–4), 546–551 (2002)

    Article  ADS  Google Scholar 

  21. R. Nikov, A. Nikolov, P. Atanasov, Preparation of gold and silver nanoparticles by pulsed laser ablation of solid target in water in XVI International School on Quantum Electronics: Laser Physics and Applications (International Society for Optics and Photonics, Bulgaria, 2010)

  22. E. Solati, D. Dorranian, Comparison between silver and gold nanoparticles prepared by pulsed laser ablation in distilled water. J. Cluster Sci. 26(3), 727–742 (2015)

    Article  Google Scholar 

  23. C.L. Sajti, R. Sattari, B.N. Chichkov, S. Barcikowski, Gram scale synthesis of pure ceramic nanoparticles by laser ablation in liquid. J. Phys. Chem. C 114(6), 2421–2427 (2010)

    Article  Google Scholar 

  24. S.A. Al-Mamun, R. Nakajima, T. Ishigaki, Effect of liquid level and laser power on the formation of spherical alumina nanoparticles by nanosecond laser ablation of alumina target. Thin Solid Films 523, 46–51 (2012)

    Article  ADS  Google Scholar 

  25. T. Tsuji, K. Iryo, N. Watanabe, M. Tsuji, Preparation of silver nanoparticles by laser ablation in solution: influence of laser wavelength on particle size. Appl. Surf. Sci. 202(1–2), 80–85 (2002)

    Article  ADS  Google Scholar 

  26. D.K. Sar, P. Nayak, K.K. Nanda, Thermodynamic model for the size-dependent melting of prism-shaped nanoparticles. Phys. Lett. A 372(25), 4627–4629 (2008)

    Article  ADS  Google Scholar 

  27. W. Hu, H. Deng, L. Deng, S. Xiao, W. Luo, Thermodynamic Properties of Nano-Silver and Alloy Particles (INTECH Open Access Publisher, 2010)

  28. E. Boulais, R. Lachaine, M. Meunier, Basic mechanisms of the femtosecond laser interaction with a plasmonic nanostructure in water. Front. Ultrafast Opt. Biomed. Sci. Ind. Appl. 7925, 79250G (2011)

    Article  Google Scholar 

  29. P.G. Kuzmin, G.A. Shafeev, G. Viau, B. Warot-Fonrose, M. Barberoglou, E. Stratakis, C. Fotakis, Porous nanoparticles of Al and Ti generated by laser ablation in liquids. Appl. Surf. Sci. 258(23), 9283–9287 (2012)

    Article  ADS  Google Scholar 

  30. T.X. Phuoc, Y. Soong, M.K. Chyu, Synthesis of Ag-deionized water nanofluids using multi-beam laser ablation in liquids. Opt. Lasers Eng. 45(12), 1099–1106 (2007)

    Article  Google Scholar 

  31. A. Semerok, C. Chaléard, V. Detalle, J.L. Lacour, P. Mauchien, P. Meynadier, C. Nouvellon, B. Sallé, P. Palianov, M. Perdrix, G. Petite, Experimental investigations of laser ablation efficiency of pure metals with femto, pico and nanosecond pulses. Appl. Surf. Sci. 138–139, 311–314 (1999)

    Article  Google Scholar 

  32. D. Sola, J.I. Peña, Study of the wavelength dependence in laser ablation of advanced ceramics and glass-ceramic materials in the nanosecond range. Materials 6(11), 5302–5313 (2013)

    Article  ADS  Google Scholar 

  33. S. Barcikowski, A. Hahn, A. Kabashin, B. Chichkov, Properties of nanoparticles generated during femtosecond laser machining in air and water. Appl. Phys. A 87(1), 47–55 (2007)

    Article  ADS  Google Scholar 

  34. A. Hahn, S. Barcikowski, B.N. Chichkov, Influences on nanoparticle production during pulsed laser ablation. Pulse 40(45), 50 (2008)

    Google Scholar 

  35. S. Noël, J. Hermann, T. Itina, Investigation of nanoparticle generation during femtosecond laser ablation of metals. Appl. Surf. Sci. 253(15), 6310–6315 (2007)

    Article  ADS  Google Scholar 

  36. H.-J. Dang, Y.-X. Tang, Q.-Z. Qin, Mass and velocity distributions of laser ablated species ejected from a colossal magnetoresistant Pr0.67Sr0.33MnO3 target. Appl. Surf. Sci. 136(3), 206–212 (1998)

    Article  ADS  Google Scholar 

  37. H.-R. Kuhn, D. Günther, Elemental fractionation studies in laser ablation inductively coupled plasma mass spectrometry on laser-induced brass aerosols. Anal. Chem. 75(4), 747–753 (2003)

    Article  Google Scholar 

  38. N.G. Semaltianos, S. Logothetidis, N. Frangis, I. Tsiaoussis, W. Perrie, G. Dearden, K.G. Watkins, Laser ablation in water: a route to synthesize nanoparticles of titanium monoxide. Chem. Phys. Lett. 496(1–3), 113–116 (2010)

    Article  Google Scholar 

  39. A. De Giacomo, M. Dell’Aglio, A. Santagata, R. Gaudiuso, O. De Pascale, P. Wagener, G. Messina, G. Compagnini, S. Barcikowski, Cavitation dynamics of laser ablation of bulk and wire-shaped metals in water during nanoparticles production. Phys. Chem. Chem. Phys. 15(9), 3083–3092 (2013)

    Article  Google Scholar 

  40. S.C. Singh, H. Zeng, C. Guo, W. Cai, Nanomaterials: Processing and Characterization with Lasers (Wiley, Weinheim, 2012)

    Book  Google Scholar 

  41. A.A. Ruth, J.A. Young, Generation of CdSe and CdTe nanoparticles by laser ablation in liquids. Colloids Surf. A 279(1–3), 121–127 (2006)

    Article  Google Scholar 

  42. M. Darroudi, M.B. Ahmad, R. Zamiri, A.H. Abdullah, N.A. Ibrahim, A.R. Sadrolhosseini, Time-dependent preparation of gelatin-stabilized silver nanoparticles by pulsed Nd: YAG laser. Solid State Sci. 13(3), 520–524 (2011)

    Article  ADS  Google Scholar 

  43. G.S. Kevin, J.C. Scaiano, Light emitting diode irradiation can control the morphology and optical properties of silver nanoparticles. J. Am. Chem. Soc. 132(6), 1825–1827 (2010)

    Article  Google Scholar 

  44. B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tünnermann, Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A 63(2), 109–115 (1996)

    Article  ADS  Google Scholar 

  45. V. Dudoitis, V. Ulevičius, G. Račiukaitis, N. Špirkauskaitė, K. Plauškaitė, Generation of metal nanoparticles by laser ablation. Lith. J. Phys. 51(3), 248–259 (2011)

    Article  Google Scholar 

  46. P. Pronko, S. Dutta, D. Du, R. Singh, Thermophysical effects in laser processing of materials with picosecond and femtosecond pulses. J. Appl. Phys. 78(10), 6233–6240 (1995)

    Article  ADS  Google Scholar 

  47. B. Rethfeld, K. Sokolowski-Tinten, D. Von Der Linde, S. Anisimov, Timescales in the response of materials to femtosecond laser excitation. Appl. Phys. A 79(4–6), 767–769 (2004)

    ADS  Google Scholar 

  48. T. Tsuji, T. Kakita, M. Tsuji, Preparation of nano-size particles of silver with femtosecond laser ablation in water. Appl. Surf. Sci. 206(1–4), 314–320 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abubaker Hamad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamad, A., Li, L. & Liu, Z. A comparison of the characteristics of nanosecond, picosecond and femtosecond lasers generated Ag, TiO2 and Au nanoparticles in deionised water. Appl. Phys. A 120, 1247–1260 (2015). https://doi.org/10.1007/s00339-015-9326-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9326-6

Keywords

Navigation