Skip to main content
Log in

Studies on the electrical and dielectric properties of chemically synthesized α-PbO nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Lead(II) oxide nanoparticles have two forms namely the α-PbO with tetragonal structure and β-PbO with orthorhombic structure. The α-PbO nanoparticles were synthesized via simple chemical precipitation method. The morphology of the nanocrystallites was characterized by XRD technique which revealed that the synthesized nanocrystallite belongs to the α-PbO phase. The impedance spectroscopy was used to study the electrical and dielectric properties such as dielectric constant, dielectric loss, impedance, and AC conductivity as a function of frequency of the applied electric field and temperature. The results indicated the effective contributions of the grain boundaries are predominant due to the fact that smaller nanoparticles have larger specific surface area which means increased fraction of grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R. Yousefi, A.K. Zak, F. Jamali-Sheini, N.M. Huang, W.J. Basirun, M. Sookhakian, Ceram. Int. 40, 11699–11703 (2014)

    Article  Google Scholar 

  2. N. Mythili, K.T. Arulmozhi, Int. J. Sci. Eng. Res. 5(1), 411–416 (2014)

    Google Scholar 

  3. T. Dhannia, S. Jayalekshmi, M.C.S. Kumar, T.P. Rao, A.C. Bose, J. Phys. Chem. Solids 70, 1443–1447 (2009)

    Article  ADS  Google Scholar 

  4. M.Y. Masoomi, A. Morsali, Coord. Chem. Rev. 256, 2921–2943 (2012)

    Article  Google Scholar 

  5. M.J.S. Fard-Jahromi, A. Morsali, Ultrason. Sonochem. 17, 435–440 (2010)

    Article  Google Scholar 

  6. P. Sundaramoorthy, V.R.G. Dev, M. Renuka Devi, Indian J. Fiber Text. Res. 37, 16–19 (2012)

    Google Scholar 

  7. S. Gnanam, V. Rajendran, Int. J. Nanomater. Biostruct. 1(2), 12–16 (2011)

    Google Scholar 

  8. M.K. Mohmoudabad, M.M. Kesheni-Motlagh, Int. J. Phys. Sci. 6(24), 5720–5725 (2011)

    Google Scholar 

  9. M. Torabi, S.H. Razavi, IJE Trans. B. Appl. 24(4), 351–355 (2011)

    Google Scholar 

  10. S.K. Khadeer Pasha, K. Chidambaram, N. Vijeyen, W. Madhuri, Optoelectron. Adv. Mater. Rapid Commun. 6(1–2), 110–116 (2012)

    Google Scholar 

  11. H.J. Shin, B.-K. Min, J. Inorg. Organomater. Polym. 23, 1305–1312 (2013)

    Article  Google Scholar 

  12. S. Li, W. Yang, M. Chen, J.Z. Gao, J. Kang, Y. Qi, Mater. Chem. Phys. 90, 262–269 (2005)

    Article  Google Scholar 

  13. M.S. Niasari, F. Mohendes, F. Davar, Polyhedron 28, 2263–2267 (2009)

    Article  Google Scholar 

  14. H. Karami, M.A. Karimi, S. Haghdar, Res. Bull. 43, 3054–3065 (2008)

    Article  Google Scholar 

  15. A.E. Shaghi, M. Pakshir, R. Mozaffarinio, J. Sol-Gel. Sci. Technol. 55, 278–284 (2010)

    Article  Google Scholar 

  16. T. Theivasanthi, M. Alagar, Arch. Phys. Res. 1(2), 112–117 (2010)

    Google Scholar 

  17. J.N. Thareyil, S. Segan, R. Raveendran, A.V. Veidyen. Phys. B 399, 1–8 (2007)

  18. A.R. Baber, S.S. Shinde, A.V. Mohelkar, K.Y. Rajpure, J. Alloy. Compd. 505, 743–749 (2010)

    Article  Google Scholar 

  19. A.S. Lanje, S.J. Sharma, R.S. Ningthoujom, J.-S. Ahn, R.B. Pode, Adv. Powder Technol. 24, 331–335 (2013)

    Article  Google Scholar 

  20. T. Kar, R.N. Chaudhary, S. Sharma, K.S. Singh, Indian J. Phys. A 73(4), 453–459 (1999)

    Google Scholar 

  21. A. Keyan, E. Tarce, U. Kediroglu, K. Esmer, Mater. Lett. 58, 2170–2174 (2004)

    Article  Google Scholar 

  22. B. Gokul, P. Matheswaran, K.M. Abhirami, R. Sathyamoorthy, J. Non-cryst. Solids 363, 161–166 (2013)

    Article  ADS  Google Scholar 

  23. M. Arshad, A. Ahmed, A. Azam, A.H. Noqvi, J. Alloy. Compd. 577, 469–474 (2013)

    Article  Google Scholar 

  24. M. Pollek, T.H. Geballc, Phys. Rev. 122, 1742–1753 (1961)

    Article  ADS  Google Scholar 

  25. P.P. Sehey, R.K. Mishra, S.N. Pandey, S. Jha, M. Shamsuddin, Curr. Appl. Phys. 13, 479–486 (2013)

    Article  ADS  Google Scholar 

  26. A. Azam, A.S. Ahmed, M.S. Ansari, M.M. ShAffeq, A.H. Naqvi, J. Alloy. Compd. 506, 242–273 (2010)

    Article  Google Scholar 

  27. R.H. Chen, C.-C. Yen, C.S. Shern, T. Tukami, Solid State Ionics 177, 2857–2864 (2006)

    Article  Google Scholar 

  28. M.J. Iqbal, Z. Ahmed, J. Power Sources 179, 763–769 (2008)

    Article  Google Scholar 

  29. V. Rajalingam, S. Velumani, M. Tabellout, N. Errien, A. Kessibe, J. Phys. Chem. Solids 74, 1695–1702 (2013)

    Article  ADS  Google Scholar 

  30. M.M. Hassen, A.S. Ahmed, M. Chaman, W. Khan, A.H. Naqvi, A. Azam, Mater. Res. Bull. 47, 3952–3958 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The author (N.M.) wishes to thank the Department of Science and Technology, New Delhi, India, for the financial support through DST-INSPIRE Fellowship. Authors are thankful to CIF-Pondicherry University, India, for providing the laboratory facility to measure the electrical properties.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. T. Arulmozhi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mythili, N., Arulmozhi, K.T. Studies on the electrical and dielectric properties of chemically synthesized α-PbO nanoparticles. Appl. Phys. A 118, 261–267 (2015). https://doi.org/10.1007/s00339-014-8671-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8671-1

Keywords

Navigation