Skip to main content
Log in

Preparation and characterization of TiO2 sol–gel modified nanocomposite films

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this study, the role of TiO2 MT-150A loading in the polymeric sol was investigated for the synthesis of immobilized TiO2 nanocomposite films on glass substrate using the MT-150A nanoparticles-modified sol–gel method. The nanocomposite film properties were examined using different material characterization techniques including X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, UV–Vis spectrophotometer, Scotch tape test and pencil hardness test. The hydrophilicity of films during UV/Vis irradiation and storage in a dark place were evaluated by a contact angle analyzer. The MT-150A loading had a significant effect on the amount of crystallite phases in the films. However, increasing the MT-150A loading in the sol resulted in an increase in rutile phase content. In addition, increasing MT-150A loading in the sol yielded films with higher hydrophilicity but a concentration of 10–30 g/L MT-150A in the sol was found as the maximum for obtaining films with good adherence on the glass substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Karuppuchamy S, Jeong M (2005) J Mater Chem Phys 93:251

    Article  CAS  Google Scholar 

  2. Sayılkan F, Asilturk M, Kiraz N, Burunkaya E, Arpac E, Sayılkan H (2009) J Hazard Mater 162:1309

    Article  PubMed  Google Scholar 

  3. Guan K, Lu B, Yin Y (2003) Surf Coat Tech 173:219

    Article  CAS  Google Scholar 

  4. Fujishima A, Zhang X, Tryk DA (2008) Surf Sci Rep 63:515–582

    Article  CAS  ADS  Google Scholar 

  5. Takaoka GH, Nose T, Kawashita M (2009) Vacuum 83:679

    Article  Google Scholar 

  6. Wang J, Lv Y, Zhang Z, Deng Y, Zhang L, Liu B, Xu R, Zhang X (2009) J Hazard Mater 170:398

    Article  CAS  PubMed  Google Scholar 

  7. Ho WY, Chan MH, Yao KS, Chang CL, Wang DY, Hsud CH (2008) Thin Solid Films 516:8530

    Article  CAS  ADS  Google Scholar 

  8. Keshmiri M, Mohseni M, Troczynski T (2004) Appl Catal B Environ 53:209

    Article  CAS  Google Scholar 

  9. Olding T, Sayer M, Barrow D (2001) Thin Solid Films 581:398–399

    Google Scholar 

  10. Balasubramanian G, Dionysiou DD, Suidan MT, Subramanian V, Baudin I, Laine JM (2003) J Mater Sci 38:823

    Article  CAS  Google Scholar 

  11. Balasubramanian G, Dionysiou DD, Suidan MT, Baudin I, Laine JM (2004) Appl Catal B Environ 47:73

    Article  CAS  Google Scholar 

  12. Chen Y, Dionysiou DD (2006) Appl Catal B Environ 62:255

    Article  CAS  Google Scholar 

  13. Chen YJ, Dionysiou DD (2007) Appl Catal A Gen 317:129

    Article  CAS  Google Scholar 

  14. Chen YJ, Dionysiou DD (2008) Appl Catal B Environ 80:147

    Article  CAS  Google Scholar 

  15. Que W, Zhang QY, Chan YC, Kam CH (2003) Compos Sci Technol 63:347

    Article  CAS  Google Scholar 

  16. Chen Y, Stathatos E, Dionysiou DD (2009) J Photochem Photobiol A Chem 203:192

    Article  CAS  Google Scholar 

  17. Sharma SD, Sing D, Saini KK, Kant C, Sharma V, Jain SC, Sharma CP (2006) Appl Catal A Gen 314:140

    Article  Google Scholar 

  18. Sreemany M, Sen S (2004) Mater Chem Phys 83:169

    Article  CAS  Google Scholar 

  19. Luca D, Mardare D, Iacomi F, Teodorescu CM (2006) Appl Surf Sci 252:6122

    Article  CAS  ADS  Google Scholar 

  20. Chen J, Yao M, Wang X (2008) J Nanopart Res 10:163

    Article  CAS  Google Scholar 

  21. Klug P, Alexander LE (1974) X-Ray diffraction procedures. Wiley, New York

    Google Scholar 

  22. Yu J, Zhao X, Yu J, Zhong G (2001) J Mater Sci Lett 20:1745

    Article  CAS  Google Scholar 

  23. Ge L, Xu M, Fang H, Sun M (2006) Appl Surf Sci 253:720

    Article  CAS  ADS  Google Scholar 

  24. Mei F, Liu C, Zhang L, Ren F, Zhou L, Zhao WK, Fang YL (2006) J Cryst Growth 292:87

    Article  CAS  ADS  Google Scholar 

  25. Standard Test Methods for Measuring Adhesion by Tape Test (1992) ASTM International. ASTM D 3359-02

  26. Standard Test Method for Film Hardness by Pencil Test (1992) American Society of Testing and Materials, Standard Designation D 3363-92a: 366

  27. Kim S, Ehrman SH (2009) J Colloid Interface Sci 338:304

    Article  CAS  PubMed  Google Scholar 

  28. Zhou XF, Chu DB, Wang SW, Lin CJ, Tian ZQ (2002) Mater Res Bull 37:1851

    Article  CAS  Google Scholar 

  29. Ohno T, Tokieda K, Higashida S, Matsumura M (2003) Appl Catal A Gen 244:383

    Article  CAS  Google Scholar 

  30. Bakardjieva S, Subrt J, Stengl V, Dianez MJ, Sayagues MJ (2005) Appl Catal B Environ 58:193

    Article  CAS  Google Scholar 

  31. Jensena H, Solovieva A, Lib Z, Sogaard EG (2005) Appl Surf Sci 246:239

    Article  ADS  Google Scholar 

  32. Guan K, Yin Y (2005) Mater Chem Phys 92:10

    Article  CAS  Google Scholar 

  33. Lakshmi RV, Basu BJ (2009) J Colloid Interface Sci 339:454

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Ministry of Research, Science and Technology of Iran to support this work. We thank Prof. Ohtani Lab in Hokkaido University for using contact angle measurements and XPS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Eshaghi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eshaghi, A., Pakshir, M. & Mozaffarinia, R. Preparation and characterization of TiO2 sol–gel modified nanocomposite films. J Sol-Gel Sci Technol 55, 278–284 (2010). https://doi.org/10.1007/s10971-010-2246-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-010-2246-1

Keywords

Navigation