Skip to main content
Log in

Reduction of picosecond laser ablation threshold and damage via nanosecond pre-pulse for removal of dielectric layers on silicon solar cells

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Laser microstructuring of thin dielectric layers on sensitive electronic devices, such as crystalline silicon solar cells, requires a careful design of the laser ablation process. For instance, degradation of the substrate’s crystallinity can vastly decrease minority carrier lifetime and consequently impair the efficiency of such devices. Short-pulse laser ablation seems well suited for clean and spatially confined structuring because of the small heat-affected zone in the remaining substrate material [Dube and Gonsiorawski in Conference record of the twenty first IEEE photovoltaic specialists conference, 624–628 1990]. The short-time regimes, however, generate steep temperature gradients that can lead to amorphization of the remaining silicon surface. By ‘heating’ the substrate via a non-ablative laser pulse in the nanosecond regime before the actual ablation pulse occurs we are able to prevent amorphization of the surface of the silicon solar cell substrate, while lowering the ablation thresholds of a SiNx layer on crystalline silicon wafers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C.E. Dube, R. Gonsiorawski, in Conference Record of the Twenty First IEEE Photovoltaic Specialists Conference 1990 ,vol. 1 (1990), pp. 624–628

  2. A. Grohe, C. Harmel, A. Knorz, S.W. Glunz, R. Preu, G. P. Willeke, in 2006 IEEE 4th World Conference Photovoltaic. Energy Conversion, vol. 2, (2006), p. 1399

  3. A.W. Blakers, A. Wang, A.M. Milne, J. Zhao, M.A. Green, Appl. Phys. Lett. 55, 1363 (1989)

    Article  ADS  Google Scholar 

  4. T. Dullweber, S. Gatz, H. Hannebauer, T. Falcon, R. Hesse, J. Schmidt, R. Brendel, Prog. Photovolt. Res. Appl. 20(6), 630–638 (2012)

  5. S. Hermann, T. Dezhdar, N.-P. Harder, R. Brendel, M. Seibt, S. Stroj, J. Appl. Phys. 108, 114514 (2010)

    Article  ADS  Google Scholar 

  6. A. Knorz, M. Peters, A. Grohe, C. Harmel, R. Preu, Prog. Photovolt. Res. Appl. 17, 127 (2009)

    Article  Google Scholar 

  7. J. Muller, K. Bothe, S. Gatz, H. Plagwitz, G. Schubert, R. Brendel, IEEE Trans. Electron Devices 58, 3239 (2011)

    Article  ADS  Google Scholar 

  8. J. Thorstensen, S. Erik Foss, J. Appl. Phys. 112, 103514 (2012)

    Article  ADS  Google Scholar 

  9. J.M. Liu, Opt. Lett. 7, 196 (1982)

    Article  ADS  Google Scholar 

  10. G.E. Jellison, F.A. Modine, Appl. Phys. Lett. 41, 180 (1982)

    Article  ADS  Google Scholar 

  11. A. Fell, D. Kray, G.P. Willeke, Appl. Phys. A 92, 987 (2008)

    Article  ADS  Google Scholar 

  12. R.A. Sinton, A. Cuevas, M. Stuckings, in Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference 1996 (1996), pp. 457–460

  13. J. Bonse, Appl. Phys. A 84, 63 (2006)

    Article  ADS  Google Scholar 

  14. A.A. Brand, A. Knorz, R. Zeidler, J.-F. Nekarda, R. Preu, SPIE Solar Energy + Technol. 8473, 84730D (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Brand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brand, A.A., Meyer, F., Nekarda, JF. et al. Reduction of picosecond laser ablation threshold and damage via nanosecond pre-pulse for removal of dielectric layers on silicon solar cells. Appl. Phys. A 117, 237–241 (2014). https://doi.org/10.1007/s00339-014-8444-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8444-x

Keywords

Navigation