Skip to main content
Log in

Research progress of metal halide perovskites in the preparation of nanosemiconductor lasers

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

As a new functional material, metal halide perovskites provide new possibilities for preparing gain media for nanosemiconductor lasers. This paper reviews the fabrication results of nanosemiconductor lasers based on metal halide perovskite materials. Firstly, three standard metal halide perovskite-based nanosemiconductor lasers are described: thin-film, nanowire, and quantum dot lasers. Under the corresponding gain structure of each laser, the appropriate gain dielectric material is discussed, and its application in the fabrication of nanosemiconductor lasers is discussed. On this basis, the effects of these gain structures and metal halide perovskite materials on the performance of nanosemiconductor lasers and related application progress are analyzed. Finally, the challenges and opportunities of nanosemiconductor lasers based on metal halide perovskite materials are summarized and the future development trend was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

In Page 6. Reproduced with permission from reference [28] (Wen et al. 2023) by Advanced Materials

Figure 2

In Page 8 Reproduced from Open Access reference [35] (He et al. 2023) by Nanophotonics

Figure 3

In Fig. 11 Reproduced with permission from reference [41] (Song et al. 2023) by Advanced Materials

Figure 4

In Fig. 12 Reproduced with permission from reference [42] (Nasu et al. 2023) by Advanced Functional Materials

Figure 5

In Page 16 Reproduced from Open Access reference [48] (Fruhling et al. 2023) by Laser & Photonics Reviews

Figure 6

In Page 19 Reproduced from Open Access reference [56] (Huang et al. 2023) by Advanced Optical Materials

Figure 7

In Page 21 Reproduced with permission from reference [62] (Tian et al. 2022) by Advanced Optical Materials

Figure 8

In Page 23 Reproduced with permission from reference [69] (Su et al. 2023) by Advanced Optical Materials

Similar content being viewed by others

Data and code availability

Not applicable

References

  1. Otero-Martínez C, Ye J, Sung J et al (2022) Colloidal metal-halide perovskite nanoplatelets: thickness-controlled synthesis, properties, and application in light-emitting diodes. Adv Mater 34:2107105. https://doi.org/10.1002/adma.202107105

    Article  CAS  Google Scholar 

  2. Zu F, Shin D, Koch N (2022) Electronic properties of metal halide perovskites and their interfaces: the basics. Mater Horiz 9:17–24. https://doi.org/10.1039/d1mh01106e

    Article  CAS  PubMed  Google Scholar 

  3. Zhang D, Zhu Y, Zhang Q et al (2022) Vertical heterogeneous integration of metal halide perovskite quantum-wires/nanowires for flexible narrowband photodetectors. Nano Lett 22:3062–3070. https://doi.org/10.1021/acs.nanolett.2c00383

    Article  CAS  PubMed  Google Scholar 

  4. Liu A, Zhu H, Bai S et al (2022) High-performance inorganic metal halide perovskite transistors. Nat Electron 5:78–83. https://doi.org/10.1038/s41928-022-00712-2

    Article  CAS  Google Scholar 

  5. Hu M, Zhu Y, Zhou Z et al (2023) Post-treatment of metal halide perovskites: from morphology control, defect passivation to band alignment and construction of heterostructures. Adv Energy Mater 13:2301888. https://doi.org/10.1002/aenm.202301888

    Article  CAS  Google Scholar 

  6. Myung CW, Hajibabaei A, Cha JH et al (2022) Challenges, opportunities, and prospects in metal halide perovskites from theoretical and machine learning perspectives. Adv Energy Mater 12:2202279. https://doi.org/10.1002/aenm.202202279

    Article  CAS  Google Scholar 

  7. Szostak R, de Souza GA, de Freitas JN et al (2023) In situ and operando characterizations of metal halide perovskite and solar cells: insights from lab-sized devices to upscaling processes. Chem Rev 123:3160–3236. https://doi.org/10.1021/acs.chemrev.2c00382

    Article  CAS  PubMed  Google Scholar 

  8. Li Z, Chu S, Zhang Y et al (2022) Mass transfer printing of metal-halide perovskite films and nanostructures. Adv Mater 34:2203529. https://doi.org/10.1002/adma.202203529

    Article  CAS  Google Scholar 

  9. Chakkamalayath J, Hiott N, Kamat PV (2022) How stable Is the 2D/3D interface of metal halide perovskite under light and heat? ACS Energy Lett 8:169–171. https://doi.org/10.1021/acsenergylett.2c02408

    Article  CAS  Google Scholar 

  10. Lee JH, Lee JW (2022) Van der waals metal contacts for characterization and optoelectronic application of metal halide perovskite thin films. ACS Energy Lett 7:3780–3787. https://doi.org/10.1021/acsenergylett.2c01510

    Article  CAS  Google Scholar 

  11. Qiao L, Fang WH, Prezhdo OV et al (2022) Suppressing oxygen-induced deterioration of metal halide perovskites by alkaline earth metal doping: a quantum dynamics study. J Am Chem Soc 144:5543–5551. https://doi.org/10.1021/jacs.2c00319

    Article  CAS  PubMed  Google Scholar 

  12. Zhao F, Ren A, Li P et al (2022) Toward continuous-wave pumped metal halide perovskite lasers: strategies and challenges. ACS Nano 16:7116–7143. https://doi.org/10.1021/acsnano.1c11539

    Article  CAS  PubMed  Google Scholar 

  13. Yang J, LaFollette DK, Lawrie BJ et al (2023) Understanding the role of cesium on chemical complexity in methylammonium-free metal halide perovskites. Adv Energy Mater 13:2202880. https://doi.org/10.1002/aenm.202202880

    Article  CAS  Google Scholar 

  14. Liang L, Ma T, Chen Z et al (2023) Patterning technologies for metal halide perovskites: a review. Adv Mater 8:2200419. https://doi.org/10.1002/admt.202200419

    Article  Google Scholar 

  15. Liu A, Zhu H, Bai S et al (2023) High-performance metal halide perovskite transistors. Nat Electron 6:559–571. https://doi.org/10.1038/s41928-023-01001-2

    Article  CAS  Google Scholar 

  16. Dong HY, Zhang CH, Li XL, Yao JN, Zhao YS (2020) Materials chemistry and engineering in metal halide perovskite lasers. Chem Soc Rev 49:951–982. https://doi.org/10.1039/c9cs00598f

    Article  CAS  PubMed  Google Scholar 

  17. Moon J, Mehta Y, Gundogdu K, So F, Gu Q (2023) Metal-halide perovskite lasers: cavity formation and emission characteristics. Adv Mater. https://doi.org/10.1002/adma.202211284

    Article  PubMed  Google Scholar 

  18. Zhang Q, Shang QY, Su R, Do TTH, Xiong QH (2021) Halide perovskite semiconductor lasers: materials, cavity design, and low threshold. Nano Lett 21:1903–1914. https://doi.org/10.1021/acs.nanolett.0c03593

    Article  CAS  PubMed  Google Scholar 

  19. Zhao FY, Ren AB, Li PH, Li Y, Wu J, Wang ZM (2022) Toward continuous-wave pumped metal halide perovskite lasers: strategies and challenges. ACS Nano 16:7116–7143. https://doi.org/10.1021/acsnano.1c11539

    Article  CAS  PubMed  Google Scholar 

  20. Hu ZP, Liu ZZ, Zhan ZJ, Shi TC, Du J, Tang XS, Leng YX (2021) Advances in metal halide perovskite lasers: synthetic strategies, morphology control, and lasing emission. Adv Photonics 3:034002. https://doi.org/10.1117/1.AP.3.3.034002

    Article  CAS  Google Scholar 

  21. Yan F, Tan ST, Li X, Demir HV (2019) Light generation in lead halide perovskite nanocrystals: LEDs, color converters, lasers, and other applications. Small 15:1902079. https://doi.org/10.1002/smll.201902079

    Article  CAS  Google Scholar 

  22. Zhang D, Zhang Q, Zhu Y et al (2023) Metal halide perovskite nanowires: synthesis, integration, properties, and applications in optoelectronics. Adv Energy Mater 13:2201735. https://doi.org/10.1002/aenm.202201735

    Article  CAS  Google Scholar 

  23. Thakur S, Dai Z, Karna P et al (2022) Tailoring the thermal conductivity of two-dimensional metal halide perovskites. Mater Horiz 9:3087–3094. https://doi.org/10.1039/d2mh01070d

    Article  CAS  PubMed  Google Scholar 

  24. Senanayak SP, Dey K, Shivanna R et al (2023) Charge transport in mixed metal halide perovskite semiconductors. Nat Mater 22:216–224. https://doi.org/10.1038/s41563-022-01448-2

    Article  CAS  PubMed  Google Scholar 

  25. Fu X, Ren T, Jiao S et al (2023) Development strategies and improved photocatalytic CO2 reduction performance of metal halide perovskite nanocrystals. J Energy Chem 83:397–422. https://doi.org/10.1016/j.jechem.2023.04.028

    Article  CAS  Google Scholar 

  26. Solari SF, Poon LN, Wörle M et al (2023) Stabilization of lead-reduced metal halide perovskite nanocrystals by high-entropy alloying. J Am Chem Soc 144:5864–5870. https://doi.org/10.1021/jacs.1c12294

    Article  CAS  Google Scholar 

  27. Chang C, Shi Y, Zou C, Lin LY (2023) MAPbBr3 first-order distributed feedback laser with high stability. Adv Photonics Res 4:2200071. https://doi.org/10.1002/adpr.202200071

    Article  Google Scholar 

  28. Wen K, Cao Y, Gu L et al (2023) Continuous-wave lasing in perovskite LEDs with an integrated distributed feedback resonator. Adv Mater 35:2303144. https://doi.org/10.1002/adma.202303144

    Article  CAS  Google Scholar 

  29. Dimopoulos E, Sakanas A, Marchevsky A et al (2022) Electrically-driven photonic crystal lasers with ultra-low threshold. Laser Photonics Rev 16:2200109. https://doi.org/10.1002/lpor.202200109

    Article  CAS  Google Scholar 

  30. Lian H, Li Y, Saravanakumar S et al (2022) Metal halide perovskite quantum dots for amphiprotic bio-imaging. Coord Chem Rev 452:214313. https://doi.org/10.1016/j.ccr.2021.214313

    Article  CAS  Google Scholar 

  31. Zhang Z, Vogelbacher F, De J et al (2022) Directional laser from solution-grown grating-patterned perovskite single-crystal microdisks. Angew Chem Int Ed 61:e202205636. https://doi.org/10.1002/anie.202205636

    Article  CAS  Google Scholar 

  32. Li Y, Jia Z, Yang Y et al (2023) Shallow traps-induced ultra-long lifetime of metal halide perovskites probed with light-biased time-resolved microwave conductivity. Appl Phys Rev 10:011406. https://doi.org/10.1063/5.0129883

    Article  CAS  Google Scholar 

  33. Asensio Y, Marras S, Spirito D et al (2022) Magnetic properties of layered hybrid organic-inorganic metal-halide perovskites: transition metal, organic cation and perovskite phase effects. Adv Funct Mater 32:2207988. https://doi.org/10.1002/adfm.202207988

    Article  Google Scholar 

  34. Zhao X, Luo A, Lin Z et al (2023) Lead-free Cs3Cu2I5 perovskite vertical cavity surface emitting lasers with low threshold. J Lumin 253:119434. https://doi.org/10.1016/j.jlumin.2022.119434

    Article  CAS  Google Scholar 

  35. He Y, Su Z, Cao F et al (2023) Lasing properties and carrier dynamics of CsPbBr3 perovskite nanocrystal vertical-cavity surface-emitting laser. Nanophotonics 12:2133–2143. https://doi.org/10.1515/nanoph-2023-0081

    Article  CAS  Google Scholar 

  36. Lin CC, Chan PW, Chen P et al (2023) Controlled cavity length and wide-spectrum lasing in FAMACsPb(BrI)3 ternary perovskite vertical-cavity surface-emitting lasers with an all-dielectric dielectric bragg reflector. Crystals 13:1517. https://doi.org/10.3390/cryst13101517

    Article  CAS  Google Scholar 

  37. Woo YW, Li Z, Jung YK et al (2022) Inhomogeneous defect distribution in mixed-polytype metal halide perovskites. ACS Energy Lett 8:356–360. https://doi.org/10.1021/acsenergylett.2c02306

    Article  CAS  Google Scholar 

  38. Shang C, Feng K, Hughes ET et al (2022) Electrically pumped quantum-dot lasers grown on 300 mm patterned Si photonic wafers. Light Sci Appl 11:299. https://doi.org/10.1038/s41377-022-00982-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vats G, Hodges B, Ferguson AJ et al (2023) Optical memory, switching, and neuromorphic functionality in metal halide perovskite materials and devices. Adv Mater 35:2205459. https://doi.org/10.1002/adma.202205459

    Article  CAS  Google Scholar 

  40. Wei K, Liang B, Sun C et al (2022) Metal halide perovskites for red-emission light-emitting diodes. Small Struct 3:2200063. https://doi.org/10.1002/sstr.202200063

    Article  CAS  Google Scholar 

  41. Song J, Shang Q, Deng X et al (2023) Continuous-wave pumped perovskite lasers with device area below 1 µm2. Adv Mater 35:2302170. https://doi.org/10.1002/adma.202302170

    Article  CAS  Google Scholar 

  42. Nasu R, Tang X, Watanabe S et al (2023) Exciton dynamics and optically pumped lasing in 1-Naphthylmethylamine-based quasi-2D perovskite films. Adv Funct Mater 33:2301794. https://doi.org/10.1002/adfm.202301794

    Article  CAS  Google Scholar 

  43. Seo J, McGillicuddy RD, Slavney AH et al (2022) Colossal barocaloric effects with ultralow hysteresis in two-dimensional metal–halide perovskites. Nat Commun 13:2536. https://doi.org/10.1038/s41467-022-29800-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Consoli A, Caselli N, López C (2022) Electrically driven random lasing from a modified Fabry-Pérot laser diode. Nat Photon 16:219–225. https://doi.org/10.1038/s41566-021-00946-0

    Article  CAS  Google Scholar 

  45. Trivedi M, Saxena D, Ng WK et al (2022) Self-organized lasers from reconfigurable colloidal assemblies. Nat Phys 18:939–944. https://doi.org/10.1038/s41567-022-01656-2

    Article  CAS  Google Scholar 

  46. Xu C, He Y, Xiao Z et al (2022) High-performance amplified spontaneous emission in inorganic CsPbBr3 perovskite thin films grown on engineered quartz substrates. Opt Express 31:39638–39646. https://doi.org/10.1364/oe.502329

    Article  CAS  Google Scholar 

  47. Liu X, Xu C, Zhao H (2023) Enhanced photoluminescence and random lasing emission in TiO2-decorated FAPbBr3 thin films. Nanomaterials 13:1761. https://doi.org/10.3390/nano13111761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fruhling C, Wang K, Chowdhury S et al (2023) Coherent random lasing in subwavelength quasi-2D perovskites. Laser Photonics Rev 17:2200314. https://doi.org/10.1002/lpor.202200314

    Article  CAS  Google Scholar 

  49. Hu J, Zhang X (2022) Substrate effects on the random lasing performance of solution-processed hybrid-perovskite multicrystal film. Crystals 12:334. https://doi.org/10.3390/cryst12030334

    Article  CAS  Google Scholar 

  50. Church SA, Al-Abri R, Parkinson P et al (2022) Optical characterisation of nanowire lasers. Prog Quantum Electron 85:100408. https://doi.org/10.1016/j.pquantelec.2022.100408

    Article  Google Scholar 

  51. Tang Y, Deng M, Zhou Z et al (2024) Recent advances in lead-free Cs2ZrCl6 metal halide perovskites and their derivatives: from fundamentals to advanced applications. Coord Chem Rev 499:215490. https://doi.org/10.1016/j.ccr.2023.215490

    Article  CAS  Google Scholar 

  52. Jevtics D, Guilhabert B, Hurtado A et al (2022) Deterministic integration of single nanowire devices with on-chip photonics and electronics. Prog Quantum Electron 85:100394. https://doi.org/10.1016/j.pquantelec.2022.100394

    Article  Google Scholar 

  53. Tang Y, Yin C, Jing Q et al (2022) Quantized exciton motion and fine energy-level structure of a single perovskite nanowire. Nano Lett 22:2907–2914. https://doi.org/10.1021/acs.nanolett.2c00079

    Article  CAS  PubMed  Google Scholar 

  54. Guo P, Liu D, Shen X et al (2022) On-wire axial perovskite heterostructures for monolithic dual-wavelength laser. Nano Energy 92:106778. https://doi.org/10.1016/j.nanoen.2021.106778

    Article  CAS  Google Scholar 

  55. Lamers N, Zhang Z, Scheblykin IG et al (2023) Gas-phase anion exchange for multisegment heterostructured CsPb(Br1−xClx)3 perovskite nanowires. Adv Optical Mater 17:2300435. https://doi.org/10.1002/adom.202300435

    Article  CAS  Google Scholar 

  56. Huang ZT, Chen JW, Li H et al (2022) Scaling laws for perovskite nanolasers with photonic and hybrid plasmonic modes. Adv Opt Mater 10:2200603. https://doi.org/10.1002/adom.202200603

    Article  CAS  Google Scholar 

  57. Safronov KR, Popkova AA, Markina DI et al (2022) Efficient emission outcoupling from perovskite lasers into highly directional and long-propagation-length bloch surface waves. Laser Photonics Rev 16:2100728. https://doi.org/10.1002/lpor.202100728

    Article  CAS  Google Scholar 

  58. Farrow T, Dhawan AR, Marshall AR et al (2023) Ultranarrow line width room-temperature single-photon source from perovskite quantum dot embedded in optical microcavity. Nano Lett 23:10667–10673. https://doi.org/10.1021/acs.nanolett.3c02058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Martani S, Zhou Y, Poli I et al (2023) Defect engineering to achieve photostable wide bandgap metal halide perovskites. ACS Energy Lett 8:2801–2808. https://doi.org/10.1021/acsenergylett.3c00610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Noel NK, Wenger B, Habisreutinger SN et al (2022) Utilizing nonpolar organic solvents for the deposition of metal-halide perovskite films and the realization of organic semiconductor/perovskite composite photovoltaics. ACS Energy Lett 7:1246–1254. https://doi.org/10.1021/acsenergylett.2c00120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yu H, Su X, Pan Y et al (2022) Narrow linewidth CsPbBr3 perovskite quantum dots microsphere lasers. Opt Mater 133:112907. https://doi.org/10.1016/j.optmat.2022.112907

    Article  CAS  Google Scholar 

  62. Tian X, Wei R, Ma Z, Qiu J (2022) Amplified spontaneous emission from perovskite quantum dots inside a transparent glass. Adv Optical Mater 10:2102483. https://doi.org/10.1002/adom.202102483

    Article  CAS  Google Scholar 

  63. Su X, Pan Y, Gao D et al (2023) Surface vertical multi-emission laser with distributed bragg reflector feedback from CsPbI3 quantum dots. Nanomaterials 13:1669. https://doi.org/10.3390/nano13101669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ran C, Liu X, Gao W et al (2023) Healing aged metal halide perovskite toward robust optoelectronic devices: mechanisms, strategies, and perspectives. Nano Energy 108:108219. https://doi.org/10.1016/j.nanoen.2023.108219

    Article  CAS  Google Scholar 

  65. Liu Z, Qin X, Chen Q et al (2023) Metal–halide perovskite nanocrystal superlattice: self-assembly and optical fingerprints. Adv Mater 35:2209279. https://doi.org/10.1002/adma.202209279

    Article  CAS  Google Scholar 

  66. Zhang X, Wang X, Liu H et al (2022) Defect engineering of metal halide perovskite optoelectronic devices. Prog Quantum Electron 86:100438. https://doi.org/10.1016/j.pquantelec.2022.100438

    Article  Google Scholar 

  67. Xiao H, Liu Z, Qian Q et al (2022) Enhanced amplified spontaneous emission of CsPbBr3 quantum dots via gold nanorods-induced localized surface plasmon resonance. Appl Phys Lett 121:222102. https://doi.org/10.1063/5.0122845

    Article  CAS  Google Scholar 

  68. Zhang H, Moazzezi P, Ren J et al (2022) Coupling perovskite quantum dot pairs in solution using a nanoplasmonic assembly. Nano Lett 22:5287–5293. https://doi.org/10.1021/acs.nanolett.2c01222

    Article  CAS  PubMed  Google Scholar 

  69. Su G, Hu P, Xiao Y et al (2023) Tuning photoluminescence of CsPbBr3 quantum dots through plasmonic nanofingers. Adv Optical Mater 11:2202750. https://doi.org/10.1002/adom.202202750

    Article  CAS  Google Scholar 

  70. Ramadan AJ, Oliver RDJ, Johnston MB et al (2023) Methylammonium-free wide-bandgap metal halide perovskites for tandem photovoltaics. Nat Rev Mater 8:822–838. https://doi.org/10.1038/s41578-023-00610-9

    Article  CAS  Google Scholar 

  71. Hernández-Balaguera E, Bisquert J (2024) Time transients with inductive loop traces in metal halide perovskites. Adv Funct Mater 34:2308678. https://doi.org/10.1002/adfm.202308678

    Article  CAS  Google Scholar 

  72. Shi R, Fang Q, Vasenko AS et al (2022) Structural disorder in higher-temperature phases increases charge carrier lifetimes in metal halide perovskites. J Am Chem Soc 144:19137–19149. https://doi.org/10.1021/jacs.2c08627

    Article  CAS  PubMed  Google Scholar 

  73. Guan X, Lei Z, Yu X et al (2022) Low-dimensional metal-halide perovskites as high-performance materials for memory applications. Small 18:2203311. https://doi.org/10.1002/smll.202203311

    Article  CAS  Google Scholar 

  74. Han K, Qiao J, Zhang S et al (2023) Band alignment engineering in ns2 electrons doped metal halide perovskites. Laser Photonics Rev 17:2200458. https://doi.org/10.1002/lpor.202200458

    Article  CAS  Google Scholar 

  75. Shrivastava M, Krieg F, Mandal D et al (2022) Room-temperature anomalous coherent excitonic optical Stark effect in metal halide perovskite quantum dots. Nano lett 22:808–814. https://doi.org/10.1021/acs.nanolett.1c04471

    Article  CAS  PubMed  Google Scholar 

  76. Park K, Lee JH, Lee JW (2022) Surface defect engineering of metal halide perovskites for photovoltaic applications. ACS Energy Lett 7:1230–1239. https://doi.org/10.1021/acsenergylett.1c02847

    Article  CAS  Google Scholar 

  77. Zhang S, Li Z, Fang Z et al (2023) A high-performance metal halide perovskite-based laser-driven display. Mater Horiz 10:3499–3506. https://doi.org/10.1039/d3mh00507k

    Article  CAS  PubMed  Google Scholar 

  78. Phung N, Mattoni A, Smith JA et al (2022) Photoprotection in metal halide perovskites by ionic defect formation. Joule 6:2152–2174. https://doi.org/10.1016/j.joule.2022.06.029

    Article  CAS  Google Scholar 

  79. Singh A, Kim Y, Henry R et al (2023) Study of glass formation and crystallization kinetics in a 2D metal halide perovskite using ultrafast calorimetry. J Am Chem Soc 145:18623–18633. https://doi.org/10.1021/jacs.3c06342

    Article  CAS  PubMed  Google Scholar 

  80. Liu J, Zheng X, Mohammed OF et al (2022) Self-assembly and regrowth of metal halide perovskite nanocrystals for optoelectronic applications. Acc Chem Res 55:262–274. https://doi.org/10.1021/acs.accounts.1c00651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhang H, Bi Z, Zhai Z et al (2023) Revealing unusual bandgap shifts with temperature and bandgap renormalization effect in phase-stabilized metal halide perovskite thin films. Adv Funct Mater 34:2302214. https://doi.org/10.1002/adfm.202302214

    Article  CAS  Google Scholar 

  82. Straus DB, Kagan CR (2022) Photophysics of two-dimensional semiconducting organic-inorganic metal-halide perovskites. Annu Rev Phys Chem 73:403–428. https://doi.org/10.1146/annurev-physchem-082820-015402

    Article  CAS  PubMed  Google Scholar 

  83. Gunnarsson WB, Roh K, Zhao L et al (2023) Toward nonepitaxial laser diodes. Chem Rev 123:7548–7584. https://doi.org/10.1021/acs.chemrev.2c00721

    Article  CAS  PubMed  Google Scholar 

  84. Zhou C, Tarasov AB, Goodilin EA et al (2022) Recent strategies to improve moisture stability in metal halide perovskites materials and devices. J Energy Chem 65:219–235. https://doi.org/10.1016/j.jechem.2021.05.035

    Article  CAS  Google Scholar 

  85. Zhan Y, Cheng Q, Song Y et al (2022) Micro-nano structure functionalized perovskite optoelectronics: from structure functionalities to device applications. Adv Funct Mater 32:2200385. https://doi.org/10.1002/adfm.202200385

    Article  CAS  Google Scholar 

  86. Hautzinger MP, Raulerson EK, Harvey SP et al (2023) Metal halide perovskite heterostructures: blocking anion diffusion with single-layer graphene. J Am Chem Soc 145:2052–2057. https://doi.org/10.1021/jacs.2c12441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wang M, Gao Y, Wang K et al (2022) Photo-induced enhancement of lattice fluctuations in metal-halide perovskites. Nat Commun 13:1019. https://doi.org/10.1038/s41467-022-28532-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. López-Fernández I, Valli D, Wang CY et al (2024) Lead-free halide perovskite materials and optoelectronic devices: progress and prospective. Adv Funct Mater 34:2307896. https://doi.org/10.1002/adfm.202307896

    Article  CAS  Google Scholar 

  89. Mosconi E, Alothman AA, Long R et al (2022) Intermolecular interactions of a-site cations modulate stability of 2D metal halide perovskites. ACS Energy Lett 8:748–752. https://doi.org/10.1021/acsenergylett.2c02742

    Article  CAS  Google Scholar 

  90. Simbula A, Wu L, Pitzalis F et al (2023) Exciton dissociation in 2D layered metal-halide perovskites. Nat Commun 14:4125. https://doi.org/10.1038/s41467-023-39831-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhao H, Kordas K, Ojala S (2023) Recent advances in synthesis of water-stable metal halide perovskites and photocatalytic applications. J Mater Chem A 11:22656–22687. https://doi.org/10.1039/d3ta04994a

    Article  CAS  Google Scholar 

  92. Sheng X, Li Y, Xia M et al (2022) Quasi-2D halide perovskite crystals and their optoelectronic applications. J Mater Chem A 10:19169–19183. https://doi.org/10.1039/d2ta02219b

    Article  CAS  Google Scholar 

  93. Wang T, Li R, Ardekani H et al (2023) Sustainable materials acceleration platform reveals stable and efficient wide-bandgap metal halide perovskite alloys. Matter 6:2963–2986. https://doi.org/10.1016/j.matt.2023.06.040

    Article  CAS  Google Scholar 

  94. Hua Z, Ben-Akacha A, He Q et al (2022) Intrinsic ion migration dynamics in a one-dimensional organic metal halide hybrid[J]. ACS Energy Lett 7:3753–3760. https://doi.org/10.1021/acsenergylett.2c01710

    Article  CAS  Google Scholar 

  95. Wang J, Shi Y, Wang Y et al (2022) Rational design of metal halide perovskite nanocrystals for photocatalytic CO2 reduction: recent advances, challenges, and prospects. ACS Energy Lett 7:2043–2059. https://doi.org/10.1021/acsenergylett.2c00752

    Article  CAS  Google Scholar 

  96. Gu H, Niu T, Zuo S et al (2022) Stable metal-halide perovskite colloids in protic ionic liquid. CCS Chem 4:3264–3274. https://doi.org/10.31635/ccschem.022.202101629

    Article  CAS  Google Scholar 

  97. Ulaganathan RK, Murugesan RC, Lin CY et al (2022) Stable formamidinium-based centimeter long two-dimensional lead halide perovskite single-crystal for long-life optoelectronic applications. Adv Funct Mater 32:2112277. https://doi.org/10.1002/adfm.202112277

    Article  CAS  Google Scholar 

  98. Rosales BA, Mundt LE, Schelhas LT et al (2022) Reversible methanolation of metal halide perovskites. J Am Chem Soc 144:667–672. https://doi.org/10.1021/jacs.1c10942

    Article  CAS  PubMed  Google Scholar 

  99. Huang CY, Li H, Wu Y et al (2023) Inorganic halide perovskite quantum dots: a versatile nanomaterial platform for electronic applications. Nanomicro Lett 15:16. https://doi.org/10.1007/s40820-022-00983-6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Grant No.2021YFB3201600) and the Key Research Projects of basic scientific research projects of Liaoning Provincial Department of Education (Grant No. JYTZD2023169).

Author information

Authors and Affiliations

Authors

Contributions

Ke Xu provided the funding and writing ideas. Honghao Qian wrote the paper. Both authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Ke Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Christopher Blanford.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, K., Qian, H. Research progress of metal halide perovskites in the preparation of nanosemiconductor lasers. J Mater Sci 59, 8085–8108 (2024). https://doi.org/10.1007/s10853-024-09667-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09667-5

Navigation