Skip to main content
Log in

Growth of high-quality ZnO thin films on (\(11\bar{2}0\)) a-plane sapphire substrates by plasma-assisted molecular beam epitaxy

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

High-quality ZnO thin films were grown on a-plane sapphire substrates by plasma-assisted molecular beam epitaxy. X-ray diffraction and transmission electron microscopy reveal that the ZnO films have high structural quality and an atomically sharp ZnO/Al2O3 interface. The full width at half maximum values of the 0002 and \(30\bar{3}2\) ZnO ω-rocking curves are 467.8 and 813.5 arc sec for a 600 nm thick ZnO film. A screw dislocation density of 4.35×108 cm−2 and an edge dislocation density of 3.38×109 cm−2 are estimated by X-ray diffraction. The surface of the ZnO epilayers contains hexagonal pits, which can be observed in the Zn-polar ZnO. The films have a resistivity of 0.119 Ω cm, an electron concentration of 6.85×1017 cm−3, and a mobility of 76.5 cm2 V−1 s−1 at room temperature. Low temperature photoluminescence measurements show good optical properties comparable to ZnO single crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ü. Özgür, D. Hofstetter, H. Morkoç, Proc. IEEE 98, 1255 (2010)

    Article  Google Scholar 

  2. A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S.F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, M. Kawasaki, Nat. Mater. 4, 42 (2005)

    Article  ADS  Google Scholar 

  3. D.C. Look, J.W. Hemsky, J.R. Sizelove, Phys. Rev. Lett. 82, 2552 (1999)

    Article  ADS  Google Scholar 

  4. S.F.J. Cox, E.A. Davis, S.P. Cottrell, P.J.C. King, J.S. Lord, J.M. Gil, H.V. Alberto, R.C. Vilão, J. Piroto Duarte, N. Ayres de Campos, A. Weidinger, R.L. Lichti, S.J.C. Irvine, Phys. Rev. Lett. 86, 2601 (2001)

    Article  ADS  Google Scholar 

  5. D.C. Look, G.C. Farlow, P. Reunchan, S. Limpijumnong, S.B. Zhang, K. Norlund, Phys. Rev. Lett. 95, 225502 (2005)

    Article  ADS  Google Scholar 

  6. Ü. Özgür, Ya.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoç, J. Appl. Phys. 98, 041301 (2005)

    Article  ADS  Google Scholar 

  7. T. Metzger, R. Höpler, E. Born, O. Ambacher, M. Stutzmann, R. Stömmer, M. Schuster, H. Göbel, S. Christiansen, M. Albrecht, H.P. Strunk, Philos. Mag. A 77, 1013 (1998)

    Article  ADS  Google Scholar 

  8. H. Heinke, V. Kirchner, S. Einfeldt, D. Hommel, Appl. Phys. Lett. 77, 2145 (2000)

    Article  ADS  Google Scholar 

  9. Y. Golan, X.H. Wu, J.S. Speck, R.P. Vaudo, V.M. Phanse, Appl. Phys. Lett. 73, 3090 (1998)

    Article  ADS  Google Scholar 

  10. S.D. Lester, F.A. Ponce, M.G. Craford, D.A. Steigerwald, Appl. Phys. Lett. 66, 1249 (1995)

    Article  ADS  Google Scholar 

  11. S. Nakamura, Science 281, 956 (1998)

    Article  Google Scholar 

  12. X.Q. Wang, Y. Tomita, O.-H. Roh, M. Ohsugi, S.-B. Che, Y. Ishitani, A. Yoshikawa, Appl. Phys. Lett. 86, 011921 (2005)

    Article  ADS  Google Scholar 

  13. H. Tampo, P. Fons, A. Yamada, K.-K. Kim, H. Shibata, K. Matsubara, S. Niki, H. Yoshikawa, H. Kanie, Appl. Phys. Lett. 87, 141904 (2005)

    Article  ADS  Google Scholar 

  14. L.K. Li, M.J. Jurkovic, W.I. Wang, J.M. Van Hove, P.P. Chow, Appl. Phys. Lett. 76, 1740 (2000)

    Article  ADS  Google Scholar 

  15. H. Maki, I. Sakaguchi, N. Ohashi, S. Sekiguchi, H. Haneda, J. Tanaka, N. Ichinose, Jpn. J. Appl. Phys. 42, 75 (2003)

    Article  ADS  Google Scholar 

  16. V.Sh. Yalishev, Y.S. Kim, X.L. Deng, B.H. Park, Sh.U. Yuldashev, J. Appl. Phys. 112, 013528 (2012)

    Article  ADS  Google Scholar 

  17. X.H. Pan, P. Ding, H.P. He, J.Y. Huang, B. Lu, H.H. Zhang, Z.Z. Ye, Opt. Commun. 285, 4431 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China under Grant No. 51172204, Open Fund of the State Key Laboratory of Optoelectronic Materials and Technologies (Sun Yat-sen University) under Grant No. KF2010-MS-02, China Postdoctoral Science Foundation under Grant No. 20100480084, and China Postdoctoral Science Foundation special funded project under Grant No. 201104710.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinhua Pan or Jingyun Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, P., Pan, X., Ye, Z. et al. Growth of high-quality ZnO thin films on (\(11\bar{2}0\)) a-plane sapphire substrates by plasma-assisted molecular beam epitaxy. Appl. Phys. A 112, 1051–1055 (2013). https://doi.org/10.1007/s00339-012-7485-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7485-2

Keywords

Navigation