Skip to main content
Log in

Epitaxial Growth of Alpha Gallium Oxide Thin Films on Sapphire Substrates for Electronic and Optoelectronic Devices: Progress and Perspective

  • Review Paper
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

The demand for high-efficient and robust power semiconductors in harsh environments such as high temperature and high voltage has been enlarged with the fast development of the industry. Gallium oxide (Ga2O3) with a larger bandgap energy of 4.8–5.3 eV than Si, SiC, and GaN is a promising material suitable for next-generation power devices. Among the Ga2O3’s phases, corundum structured α-Ga2O3 has attracted much attention, benefiting from the epitaxial growth on cheap sapphire substrate and the existence of p-type materials with the same crystal structure. This paper comprehensively reviews the progress on the epitaxial growth of α-Ga2O3 thin films and the fabrication of α-Ga2O3-based electronic and optoelectronic devices. First, state-of-the-art technologies for improving the crystal quality of α-Ga2O3 depending on growth methods are presented. Secondly, the current research level of growth of n-type doped α-Ga2O3 is comprehended. Finally, the recent progress of electronic and optoelectronic devices, including Schottky diodes, field-effect transistors, and solar-blind photodetectors, is summarized.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Copyright 2019, American Chemical Society. iv Selective area growth of α-Ga2O3. v The graph showing mobility as a function of carrier concentration. Reproduced with permission [62]. Copyright 2019, Wiley–VCH. vi Schematic of α-Ir2O3/α-Ga2O3 heterojunction. Reproduced with permission [38]. Copyright 2021, AIP publishing. vii Schematic of MSM α-Ga2O3 photodetector. Reproduced with permission [114]. Copyright 2021, AVS. b The number of publications and citations on α-Ga2O3 per year conducted since 2011. The publication search was performed using the web of science [v.5.35]–web of sciencecore collection search: keywords of alpha gallium oxide or (α-Ga2O3) have been used

Fig. 2
Fig. 3

Copyright 2021, Wiley–VCH. c Schematic of the growth mechanism of α-Ga2O3 in mist CVD. d Concentration profiles of 18O, 16O, and Ga atoms of the α-Ga2O3 thin films grown with mist CVD. Reproduced with permission [79]. Copyright 2020, AIP publishing

Fig. 4

Copyright 2019, AIP Publishing. d XRD theta-2theta scan of α-(AlxGa1-x)2O3 thin films depending on aluminum contents by mist CVD. Reproduced with permission [49]. Copyright 2018, AIP Publishing. e XRD theta-2theta spectra, f resistivity and optical bandgap of α-(InxGa1−x)2O3 thin films as a function of In contents. Reproduced with permission [42]. Copyright 2014, Elsevier B.V

Fig. 5

Copyright 2016, AIP Publishing. Reproduced with permission [89]. Copyright 2021, AIP Publishing. c SEM images of α-Ga2O3 selectively grown on sapphire nanomembrane with the stipe patterns lying in the [11\(\overline{2}\)0] and [1\(\overline{1}\)00] directions. d Reconstructed TEM images of α-Ga2O3 on the bottom and top of the pattern lying in the [1\(\overline{1}\)00] direction. Reproduced with permission [90]. Copyright 2021, American chemical society

Fig. 6

Copyright 2015, IEEE. d The device schematic, band structure, and e I-V characteristics pn heterojunction with α-Ir2O3/α-Ga2O3. Reproduced with permission [38]. Copyright 2021, AIP Publishing. f The device structure of Mg-doped α-(Ir, Ga)2O3/α-Ga2O3 pn heterostructure diodes and corresponding g I-V characteristics. Reproduced with permission [39]. Copyright 2021, AIP Publishing

Fig. 7

Copyright 2018, Elsevier B.V. c Device structure and XRD theta/2theta spectrum of Al NPs decorated α-Ga2O3 grown by mist CVD, d Spectral responsivity of the Al NP-enhanced photodetectors, and e the comparison of dark current characteristics of devices with and without Al NPs. Reproduced with permission [113]. Copyright 2019, American chemical society. f MSM detector based on Si-doped α-Ga2O3 grown by HVPE, g photo-to-dark current ratio and EQE (%) under UV regime at 5 V. Reproduced with permission [114]. Copyright 2021, AVS

Similar content being viewed by others

References

  1. Reese, S.B., Remo, T., Green, J., Zakutayev, A.: How much will gallium oxide power electronics cost? Joule 3, 903–907 (2019)

    Article  Google Scholar 

  2. Yoon, D.-H., Reimanis, I.E.: A review on the joining of SiC for high-temperature applications. J. Korean Ceram. Soc. 57, 246–270 (2020)

    Article  CAS  Google Scholar 

  3. Ha, M. T., Shin, Y. J., Bae, S. Y., Park, S. Y., Jeong, S. M. Effect of hot-zone aperture on the growth behavior of SiC single crystal produced via top-seeded solution growth method. J. Korean Ceram. Soc. 56, 589–595 (2019)

    Article  CAS  Google Scholar 

  4. Jones, E.A., Wang, F.F., Costinett, D.: Review of commercial GaN power devices and GaN-based converter design challenges. IEEE J. Emerg. Selected Top. Pow. Electron. 4, 707–719 (2016)

    Article  Google Scholar 

  5. Shah, F.M., Maqsood, S., Damaševičius, R., Blažauskas, T.: Disturbance rejection and control design of MVDC converter with evaluation of power loss and efficiency comparison of SiC and Si based power devices. Electronics 9, 1878 (2020)

    Article  CAS  Google Scholar 

  6. Higashiwaki, M., Murakami, H., Kumagai, Y., Kuramata, A.: Current status of Ga2O3 power devices. Jpn. J. Appl. Phys. 55, 1202A1 (2016)

    Article  Google Scholar 

  7. Higashiwaki, M.: β-gallium oxide devices: progress and outlook. Phys. Status Solidi (RRL)–Rapid Res. Lett. 15, 2100357 (2021)

    Article  CAS  Google Scholar 

  8. Sasaki, K., Kuramata, A., Masui, T., Villora, E.G., Shimamura, K., Yamakoshi, S.: Device-quality β-Ga2O3 epitaxial films fabricated by ozone molecular beam epitaxy. Appl. Phys. Express 5, 035502 (2012)

    Article  Google Scholar 

  9. Shinohara, D., Fujita, S.: Heteroepitaxy of corundum-structured α-Ga2O3 thin films on α-Al2O3 substrates by ultrasonic mist chemical vapor deposition. Jpn. J. Appl. Phys. 47, 7311–7313 (2008)

    Article  CAS  Google Scholar 

  10. Liu, X., Liu, Q., Zhao, B., Ren, Y., Tao, B., Zhang, W.: Comparison of β-Ga2O3 thin films grown on r-plane and c-plane sapphire substrates. Vacuum 178, 109435 (2020)

    Article  CAS  Google Scholar 

  11. Byun, D. W., Lee, Y. J., Oh, J. M., Schweitz, M. A., Koo, S. M.: Morphological and electrical properties of β-Ga2O3/4H-SiC heterojunction diodes. Electron. Mater. Lett. 17, 479–484 (2021)

    Article  CAS  Google Scholar 

  12. Hayashi, H., Huang, R., Oba, F., Hirayama, T., Tanaka, I.: Epitaxial growth of Mn-doped γ-Ga2O3 on spinel substrate. J. Mater. Res. 26, 578–583 (2011)

    Article  CAS  Google Scholar 

  13. Zhuo, Y., Chen, Z., Tu, W., Ma, X., Pei, Y., Wang, G.: β-Ga2O3 versus ε-Ga2O3: control of the crystal phase composition of gallium oxide thin film prepared by metal-organic chemical vapor deposition. Appl. Surf. Sci. 420, 802–807 (2017)

    Article  CAS  Google Scholar 

  14. Cora, I., Mezzadri, F., Boschi, F., Bosi, M., Čaplovičová, M., Calestani, G., et al.: The real structure of ε-Ga2O3 and its relation to κ-phase. CrystEngComm 19, 1509–1516 (2017)

    Article  CAS  Google Scholar 

  15. Roy, R., Hill, V., Osborn, E.: Polymorphism of Ga2O3 and the system Ga2O3—H2O. J. Am. Chem. Soc. 74, 719–722 (1952)

    Article  CAS  Google Scholar 

  16. Tomm, Y., Ko, J., Yoshikawa, A., Fukuda, T.: Floating zone growth of β-Ga2O3: a new window material for optoelectronic device applications. Sol. Energy Mater. Sol. Cells 66, 369–374 (2001)

    Article  CAS  Google Scholar 

  17. Kuramata, A., Koshi, K., Watanabe, S., Yamaoka, Y., Masui, T., Yamakoshi, S.: High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth. Jpn. J. Appl. Phys. 55, 1202a2 (2016)

    Article  Google Scholar 

  18. Galazka, Z., Uecker, R., Irmscher, K., Albrecht, M., Klimm, D., Pietsch, M., et al.: Czochralski growth and characterization of β-Ga2O3 single crystals. Cryst. Res. Technol. 45, 1229–1236 (2010)

    Article  CAS  Google Scholar 

  19. Kasu, M., Hanada, K., Moribayashi, T., Hashiguchi, A., Oshima, T., Oishi, T., et al.: Relationship between crystal defects and leakage current in β-Ga2O3 Schottky barrier diodes. Jpn. J. Appl. Phys. 55, 1202bb (2016)

    Article  Google Scholar 

  20. Seiler, W., Selmane, M., Abdelouhadi, K., Perrière, J.: Epitaxial growth of gallium oxide films on c-cut sapphire substrate. Thin Solid Films 589, 556–562 (2015)

    Article  CAS  Google Scholar 

  21. Rafique, S., Han, L., Neal, A.T., Mou, S., Boeckl, J., Zhao, H.: Towards high-mobility heteroepitaxial β-Ga2O3 on sapphire−dependence on the substrate off-axis angle. Phys. Status Solidi (A) 215, 1700467 (2018)

    Article  Google Scholar 

  22. Barthel, A., Roberts, J., Napari, M., Frentrup, M., Huq, T., Kovacs, A., et al.: Ti alloyed alpha-Ga2O3: route towards wide band gap engineering. Micromachines (Basel) 11, 1128 (2020)

    Article  Google Scholar 

  23. Li, Y., Weng, Y., Yin, X., Yu, X., Kumar, S.R.S., Wehbe, N., et al.: Orthorhombic Ti2O3: a polymorph-dependent narrow-bandgap ferromagnetic oxide. Adv. Func. Mater. 28, 1705657 (2018)

    Article  Google Scholar 

  24. Yoshimatsu, K., Hasegawa, N., Nambu, Y., Ishii, Y., Wakabayashi, Y., Kumigashira, H.: Metallic ground states of undoped Ti2O3 films induced by elongated c-axis lattice constant. Sci. Rep. 10, 22109 (2020)

    Article  CAS  Google Scholar 

  25. Scherson, Y.D., Aboud, S.J., Wilcox, J., Cantwell, B.J.: Surface structure and reactivity of rhodium oxide. J. Phys. Chem. C 115, 11036–11044 (2011)

    Article  CAS  Google Scholar 

  26. Koffyberg, F.: Optical bandgaps and electron affinities of semiconducting Rh2O3 (I) and Rh2O3 (III). J. Phys. Chem. Solids 53, 1285–1288 (1992)

    Article  CAS  Google Scholar 

  27. Kaneko, K., Fujita, S., Hitora, T.: A power device material of corundum-structured α-Ga2O3fabricated by MIST EPITAXY®technique. Jpn. J. Appl. Phys. 57, 02cb18 (2018)

    Article  Google Scholar 

  28. Zhang, F., Li, X., Zhao, Q., Zhang, Q., Tadé, M., Liu, S.: Fabrication of α-Fe2O3/In2O3 composite hollow microspheres: a novel hybrid photocatalyst for toluene degradation under visible light. J. Colloid Interf. Sci. 457, 18–26 (2015)

    Article  CAS  Google Scholar 

  29. Kraushofer, F., Jakub, Z., Bichler, M., Hulva, J., Drmota, P., Weinold, M., et al.: Atomic-scale structure of the hematite alpha-Fe2O3(1102) “R-cut” surface. J. Phys. Chem. C Nanomater. Interf. 122, 1657–1669 (2018)

    Article  CAS  Google Scholar 

  30. Kaneko, K., Akaiwa, K., Fujita, S.: Crystal structure of non-doped and Sn-doped α-(GaFe) 2O3 thin films. MRS Online Proc. Library (OPL) 1494, 147–152 (2013)

    Article  Google Scholar 

  31. Kaneko, K., Kakeya, I., Komori, S., Fujita, S.: Band gap and function engineering for novel functional alloy semiconductors: bloomed as magnetic properties at room temperature with α-(GaFe)2O3. J. Appl. Phys. 113, 233901 (2013)

    Article  Google Scholar 

  32. Zhang, H., Li, L., Liu, C., Wang, W., Liang, P., Mitsuzak, N., Chen, Z.: Carbon coated α-Fe2O3 photoanode synthesized by a facile anodic electrodeposition for highly efficient water oxidation. Electron. Mater. Lett. 14, 348–356 (2018)

    Article  CAS  Google Scholar 

  33. Cheng, R., Xu, B., Borca, C.N., Sokolov, A., Yang, C.S., Yuan, L., et al.: Characterization of the native Cr2O3 oxide surface of CrO2. Appl. Phys. Lett. 79, 3122–3124 (2001)

    Article  CAS  Google Scholar 

  34. Gibot, P., Vidal, L.: Original synthesis of chromium (III) oxide nanoparticles. J. Eur. Ceram. Soc. 30, 911–915 (2010)

    Article  CAS  Google Scholar 

  35. Kaneko, K., Nomura, T., Fujita, S.: Corundum-structured α-phase Ga2O3-Cr2O3-Fe2O3 alloy system for novel functions. Phys. Status Solidi (C) 7, 2467–2470 (2010)

    Article  CAS  Google Scholar 

  36. Chesnokov, A., Gryaznov, D., Skorodumova, N.V., Kotomin, E.A., Zitolo, A., Zubkins, M., et al.: The local atomic structure and thermoelectric properties of Ir-doped ZnO: hybrid DFT calculations and XAS experiments. J. Mater. Chem. C 9, 4948–4960 (2021)

    Article  CAS  Google Scholar 

  37. Kan, S.-I., Takemoto, S., Kaneko, K., Takahashi, I., Sugimoto, M., Shinohe, T., et al.: Electrical properties of α-Ir2O3/α-Ga2O3 pn heterojunction diode and band alignment of the heterostructure. Appl. Phys. Lett. 113, 212104 (2018)

    Article  Google Scholar 

  38. Hao, J.G., Gong, H.H., Chen, X.H., Xu, Y., Ren, F.F., Gu, S.L., et al.: In situ heteroepitaxial construction and transport properties of lattice-matched α-Ir2O3/α-Ga2O3 p-n heterojunction. Appl. Phys. Lett. 118, 261601 (2021)

    Article  CAS  Google Scholar 

  39. Kaneko, K., Masuda, Y., Kan, S.-I., Takahashi, I., Kato, Y., Shinohe, T., et al.: Ultra-wide bandgap corundum-structured p-type α-(Ir, Ga)2O3 alloys for α-Ga2O3 electronics. Appl. Phys. Lett. 118, 102104 (2021)

    Article  CAS  Google Scholar 

  40. Weiher, R.L., Ley, R.P.: Optical properties of indium oxide. J. Appl. Phys. 37, 299–302 (1966)

    Article  CAS  Google Scholar 

  41. García-Domene, B., Sans, J.A., Manjón, F.J., Ovsyannikov, S.V., Dubrovinsky, L.S., Martinez-Garcia, D., et al.: Synthesis and high-pressure study of corundum-type In2O3. J. Phys. Chem. C 119, 29076–29087 (2015)

    Article  Google Scholar 

  42. Suzuki, N., Kaneko, K., Fujita, S.: Growth of corundum-structured (InxGa1-x)2O3 alloy thin films on sapphire substrates with buffer layers. J. Cryst. Growth 401, 670–672 (2014)

    Article  CAS  Google Scholar 

  43. Ito, H., Kaneko, K., Fujita, S.: Growth and band gap control of corundum-structured α-(AlGa)2O3 thin films on sapphire by spray-assisted mist chemical vapor deposition. Jpn. J. Appl. Phys. 51, 100207 (2012)

    Article  Google Scholar 

  44. Santos, R.C.R., Longhinotti, E., Freire, V.N., Reimberg, R.B., Caetano, E.W.S.: Elucidating the high-k insulator α-Al2O3 direct/indirect energy band gap type through density functional theory computations. Chem. Phys. Lett. 637, 172–176 (2015)

    Article  CAS  Google Scholar 

  45. Lee, S.-D., Ito, Y., Kaneko, K., Fujita, S.: Enhanced thermal stability of alpha gallium oxide films supported by aluminum doping. Jpn. J. Appl. Phys. 54, 030301 (2015)

    Article  CAS  Google Scholar 

  46. Oda, M., Kaneko, K., Fujita, S., Hitora, T.: Crack-free thick (∼5 µm) α-Ga2O3 films on sapphire substrates with α-(Al, Ga)2O3 buffer layers. Jpn. J. Appl. Phys. 55, 1202b4 (2016)

    Article  Google Scholar 

  47. Kaneko, K., Suzuki, K., Ito, Y., Fujita, S.: Growth characteristics of corundum-structured α-(AlxGa1-x)2O3/Ga2O3 heterostructures on sapphire substrates. J. Cryst. Growth 436, 150–154 (2016)

    Article  CAS  Google Scholar 

  48. Jinno, R., Uchida, T., Kaneko, K., Fujita, S.: Reduction in edge dislocation density in corundum-structured α-Ga2O3 layers on sapphire substrates with quasi-graded α-(Al, Ga)2O3 buffer layers. Appl. Phys. Express 9, 071101 (2016)

    Article  Google Scholar 

  49. Dang, G.T., Yasuoka, T., Tagashira, Y., Tadokoro, T., Theiss, W., Kawaharamura, T.: Bandgap engineering of α-(AlxGa1-x)2O3 by a mist chemical vapor deposition two-chamber system and verification of Vegard‘s law. Appl. Phys. Lett. 113, 062102 (2018)

    Article  Google Scholar 

  50. Jinno, R., Uchida, T., Kaneko, K., Fujita, S.: Control of crystal structure of Ga2O3 on sapphire substrate by introduction of α-(AlxGa1−x)2O3 buffer layer. Phys. Status Solidi (B) 255, 1700326 (2018)

    Article  Google Scholar 

  51. Uchida, T., Jinno, R., Takemoto, S., Kaneko, K., Fujita, S.: Evaluation of band alignment of α-Ga2O3/α-(AlxGa1−x)2O3 heterostructures by X-ray photoelectron spectroscopy. Jpn. J. Appl. Phys. 57, 040314 (2018)

    Article  Google Scholar 

  52. Chang, C., Jinno, R., Jena, D., Xing, H., Muller, D.: Direct imaging on strain relaxation of MBE-grown single phase alpha-(Al, Ga)2O3 on m-sapphire substrate in atomic resolution using scanning transmission electron microscopy. Bull. Am. Phys. Soc. 65, 1 (2020)

    Google Scholar 

  53. Chen, Z., Arita, M., Saito, K., Tanaka, T., Guo, Q.: Epitaxial growth of (AlxGa1−x)2O3 thin films on sapphire substrates by plasma assisted pulsed laser deposition. AIP Adv. 11, 035319 (2021)

    Article  CAS  Google Scholar 

  54. Jinno, R., Chang, C.S., Onuma, T., Cho, Y., Ho, S.-T., Rowe, D., et al.: Crystal orientation dictated epitaxy of ultrawide-bandgap 5.4-to 8.6-eV α-(AlGa)2O3 on m-plane sapphire. Sci. Adv. 7, eabd5891 (2021)

    Article  CAS  Google Scholar 

  55. McCandless, J.P., Chang, C.S., Nomoto, K., Casamento, J., Protasenko, V., Vogt, P., et al.: Thermal stability of epitaxial α-Ga2O3 and (Al, Ga)2O3 layers on m-plane sapphire. Appl. Phys. Lett. 119, 062102 (2021)

    Article  CAS  Google Scholar 

  56. Dang, G.T., Tagashira, Y., Yasuoka, T., Liu, L., Kawaharamura, T.: Conductive Si-doped α-(AlxGa1−x)2O3 thin films with the bandgaps up to 6.22 eV. AIP Adv. 10, 115019 (2020)

    Article  CAS  Google Scholar 

  57. Son, H., Choi, Y.-J., Park, J.-H., Ryu, B., Jeon, D.-W.: Correlation of pulsed gas flow on Si-doped α-Ga2O3 epilayer grown by halide vapor phase epitaxy. ECS J. Solid State Sci. Technol. 9, 055005 (2020)

    Article  CAS  Google Scholar 

  58. Oshima, Y., Kawara, K., Shinohe, T., Hitora, T., Kasu, M., Fujita, S.: Epitaxial lateral overgrowth of α-Ga2O3 by halide vapor phase epitaxy. APL Mater. 7, 022503 (2019)

    Article  Google Scholar 

  59. Uchida, T., Kaneko, K., Fujita, S.: Electrical characterization of Si-doped n-type α-Ga2O3 on sapphire substrates. MRS Adv. 3, 171–177 (2018)

    Article  CAS  Google Scholar 

  60. Akaiwa, K., Fujita, S.: Electrical conductive corundum-structured α-Ga2O3 thin films on sapphire with tin-doping grown by spray-assisted mist chemical vapor deposition. Jpn. J. Appl. Phys. 51, 070203 (2012)

    Article  Google Scholar 

  61. Akaiwa, K., Kaneko, K., Ichino, K., Fujita, S.: Conductivity control of Sn-doped α-Ga2O3 thin films grown on sapphire substrates. Jpn. J. Appl. Phys. 55, 1202ba (2016)

    Article  Google Scholar 

  62. Akaiwa, K., Ota, K., Sekiyama, T., Abe, T., Shinohe, T., Ichino, K.: Electrical properties of Sn-doped α-Ga2O3 films on m-plane sapphire substrates grown by mist chemical vapor deposition. Phys. Status Solidi (A) 217, 1100632 (2020)

    Google Scholar 

  63. Kawaharamura, T., Dang, G.T., Furuta, M.: Successful growth of conductive highly crystalline Sn-doped α-Ga2O3 thin films by fine-channel mist chemical vapor deposition. Jpn. J. Appl. Phys. 51, 040207 (2012)

    Article  Google Scholar 

  64. Um, J.H., Choi, B.S., Jeong, D.H., Choi, H.-U., Hwang, S., Jeon, D.-W., et al.: Chlorine-based high density plasma etching of α-Ga2O3 epitaxy layer. Electron. Mater. Lett. 17, 142–147 (2021)

    Article  CAS  Google Scholar 

  65. Son, H., Jeon, D.-W.: Optimization of the growth temperature of α-Ga2O3 epilayers grown by halide vapor phase epitaxy. J. Alloy. Compd. 773, 631–635 (2019)

    Article  CAS  Google Scholar 

  66. Oshima, Y., Víllora, E.G., Shimamura, K.: Halide vapor phase epitaxy of twin-free α-Ga2O3 on sapphire (0001) substrates. Appl. Phys. Express 8, 055501 (2015)

    Article  Google Scholar 

  67. Leach, J.H., Udwary, K., Rumsey, J., Dodson, G., Splawn, H., Evans, K.R.: Halide vapor phase epitaxial growth of β-Ga2O3 and α-Ga2O3 films. APL Mater. 7, 022504 (2019)

    Article  Google Scholar 

  68. Son, H., Choi, Y.-J., Hwang, J., Jeon, D.-W.: Influence of post-annealing on properties of α-Ga2O3 epilayer grown by halide vapor phase epitaxy. ECS J. Solid State Sci. Technol. 8, Q3024–Q3027 (2019)

    Article  CAS  Google Scholar 

  69. Lee, M., Yang, M., Lee, H.-Y., Lee, H.U., Lee, H., Son, H., et al.: The growth of HVPE α-Ga2O3 crystals and its solar-blind UV photodetector applications. Mater. Sci. Semicond. Process. 123, 105565 (2021)

    Article  CAS  Google Scholar 

  70. Son, H., Choi, Y.-J., Ha, J.-S., Jung, S.H., Jeon, D.-W.: Crystal quality improvement of α-Ga2O3 growth on stripe patterned template via epitaxial lateral overgrowth. Cryst. Growth Des. 19, 5105–5110 (2019)

    Article  CAS  Google Scholar 

  71. Cha, A.-N., Bang, S., Rho, H., Bae, H., Jeon, D.-W., Ju, J.-W., et al.: Effects of nanoepitaxial lateral overgrowth on growth of α-Ga2O3 by halide vapor phase epitaxy. Appl. Phys. Lett. 115, 091605 (2019)

    Article  Google Scholar 

  72. Son, H., Choi, Y.J., Hong, S.K., Park, J.H., Jeon, D.W.: Reduction of dislocations in alpha-Ga2O3 epilayers grown by halide vapor-phase epitaxy on a conical frustum-patterned sapphire substrate. IUCrJ 8, 462–467 (2021)

    Article  CAS  Google Scholar 

  73. Kawara, K., Oshima, T., Okigawa, M., Shinohe, T.: In-plane anisotropy in the direction of the dislocation bending in α-Ga2O3 grown by epitaxial lateral overgrowth. Appl. Phys. Express 13, 115502 (2020)

    Article  CAS  Google Scholar 

  74. Kawara, K., Oshima, Y., Okigawa, M., Shinohe, T.: Elimination of threading dislocations in α-Ga2O3 by double-layered epitaxial lateral overgrowth. Appl. Phys. Express 13, 075507 (2020)

    Article  CAS  Google Scholar 

  75. Polychroniadis, E., Syväjärvi, M., Yakimova, R., Stoemenos, J.: Microstructural characterization of very thick freestanding 3C-SiC wafers. J. Cryst. Growth 263, 68–75 (2004)

    Article  CAS  Google Scholar 

  76. Kumagai, Y., Kubota, Y., Nagashima, T., Kinoshita, T., Dalmau, R., Schlesser, R., et al.: Preparation of a freestanding AlN substrate from a thick AlN layer grown by hydride vapor phase epitaxy on a bulk AlN substrate prepared by physical vapor transport. Appl. Phys. Express 5, 055504 (2012)

    Article  Google Scholar 

  77. Motoki, K., Okahisa, T., Matsumoto, N., Matsushima, M., Kimura, H., Kasai, H., et al.: Preparation of large freestanding GaN substrates by hydride vapor phase epitaxy using GaAs as a starting substrate. Jpn. J. Appl. Phys. 40, L140 (2001)

    Article  CAS  Google Scholar 

  78. Ha, M.T., Kim, K.H., Shin, Y.J., Jeong, S.M., Bae, S.Y.: Leidenfrost motion of water microdroplets on surface substrate: epitaxy of gallium oxide via mist chemical vapor deposition. Adv. Mater. Interf. 8, 2001895 (2021)

    Article  CAS  Google Scholar 

  79. Uno, K., Ohta, M., Tanaka, I.: Growth mechanism of α-Ga2O3 on a sapphire substrate by mist chemical vapor deposition using acetylacetonated gallium source solutions. Appl. Phys. Lett. 117, 052106 (2020)

    Article  CAS  Google Scholar 

  80. Hao, J.G., Ma, T.C., Chen, X.H., Kuang, Y., Li, L., Li, J., et al.: Phase tailoring and wafer-scale uniform hetero-epitaxy of metastable-phased corundum α-Ga2O3 on sapphire. Appl. Surf. Sci. 513, 145871 (2020)

    Article  CAS  Google Scholar 

  81. Ma, T., Chen, X., Ren, F., Zhu, S., Gu, S., Zhang, R., et al.: Heteroepitaxial growth of thick α-Ga2O3 film on sapphire (0001) by MIST-CVD technique. J. Semicond. 40, 012804 (2019)

    Article  CAS  Google Scholar 

  82. Ma, T.C., Chen, X.H., Kuang, Y., Li, L., Li, J., Kremer, F., et al.: On the origin of dislocation generation and annihilation in α-Ga2O3 epilayers on sapphire. Appl. Phys. Lett. 115, 182101 (2019)

    Article  Google Scholar 

  83. Kaneko, K., Nomura, T., Kakeya, I., Fujita, S.: Fabrication of highly crystalline corundum-structured α-(Ga1-xFex)2O3 alloy thin films on sapphire substrates. Appl. Phys. Express 2, 075501 (2009)

    Article  Google Scholar 

  84. Dang, G.T., Sato, S., Tagashira, Y., Yasuoka, T., Liu, L., Kawaharamura, T.: α-(AlxGa1−x)2O3 single-layer and heterostructure buffers for the growth of conductive Sn-doped α-Ga2O3 thin films via mist chemical vapor deposition. APL Mater. 8, 101101 (2020)

    Article  CAS  Google Scholar 

  85. Nishinaka, H., Tahara, D., Morimoto, S., Yoshimoto, M.: Epitaxial growth of α-Ga2O3 thin films on a-, m-, and r-plane sapphire substrates by mist chemical vapor deposition using α-Fe2O3 buffer layers. Mater. Lett. 205, 28–31 (2017)

    Article  CAS  Google Scholar 

  86. Kawaharamura, T., Dang, G.T., Nitta, N.: Atmospheric-pressure epitaxial growth technique of a multiple quantum well by mist chemical vapor deposition based on Leidenfrost droplets. Appl. Phys. Lett. 109, 151603 (2016)

    Article  Google Scholar 

  87. Kim, B., Yang, D., Sohn, W., Lee, S., Jang, T., Yoon, E., et al.: Strain relaxation and dislocation annihilation in compositionally graded α-(AlxGa1-x)2O3 layer for high voltage α-Ga2O3 power devices. Acta Mater. 221, 117423 (2021)

    Article  CAS  Google Scholar 

  88. Jinno, R., Yoshimura, N., Kaneko, K., Fujita, S.: Enhancement of epitaxial lateral overgrowth in the mist chemical vapor deposition of α-Ga2O3 by using a-plane sapphire substrate. Jpn. J. Appl. Phys. 58, 120912 (2019)

    Article  CAS  Google Scholar 

  89. Dang, G.T., Yasuoka, T., Kawaharamura, T.: Sub-μm features patterned with laser interference lithography for the epitaxial lateral overgrowth of α-Ga2O3 via mist chemical vapor deposition. Appl. Phys. Lett. 119, 041902 (2021)

    Article  CAS  Google Scholar 

  90. Yang, D., Kim, B., Lee, T.H., Oh, J., Lee, S., Sohn, W., et al.: Selective area growth of single-crystalline alpha-gallium oxide on a sapphire nanomembrane by mist chemical vapor deposition. ACS Appl. Electron. Mater. 3, 4328 (2021)

    Article  CAS  Google Scholar 

  91. Lee, S.-D., Akaiwa, K., Fujita, S.: Thermal stability of single crystalline alpha gallium oxide films on sapphire substrates. Phys. Status Solidi (C) 10, 1592–1595 (2013)

    Article  CAS  Google Scholar 

  92. Jinno, R., Kaneko, K., Fujita, S.: Thermal stability of α-Ga2O3 films grown on c-plane sapphire substrates via mist-CVD. AIP Adv. 10, 115013 (2020)

    Article  CAS  Google Scholar 

  93. Guo, D.Y., Zhao, X.L., Zhi, Y.S., Cui, W., Huang, Y.Q., An, Y.H., et al.: Epitaxial growth and solar-blind photoelectric properties of corundum-structured α-Ga2O3 thin films. Mater. Lett. 164, 364–367 (2016)

    Article  CAS  Google Scholar 

  94. Oshima, T., Kato, Y., Imura, M., Nakayama, Y., Takeguchi, M.: α-Al2O3/Ga2O3 superlattices coherently grown on r-plane sapphire. Appl. Phys. Express 11, 065501 (2018)

    Article  Google Scholar 

  95. Kracht, M., Karg, A., Feneberg, M., Bläsing, J., Schörmann, J., Goldhahn, R., et al.: Anisotropic optical properties of metastable (01–12) α-Ga2O3 grown by plasma-assisted molecular beam epitaxy. Phys. Rev. Appl. 10, 024047 (2018)

    Article  CAS  Google Scholar 

  96. Cheng, Z., Hanke, M., Vogt, P., Bierwagen, O., Trampert, A.: Phase formation and strain relaxation of Ga2O3 on c-plane and a-plane sapphire substrates as studied by synchrotron-based X-ray diffraction. Appl. Phys. Lett. 111, 162104 (2017)

    Article  Google Scholar 

  97. Hilfiker, M., Kilic, U., Stokey, M., Jinno, R., Cho, Y., Xing, H.G., et al.: High-frequency and below bandgap anisotropic dielectric constants in α-(AlxGa1−x)2O3 (0≤x≤1). Appl. Phys. Lett. 119, 092103 (2021)

    Article  CAS  Google Scholar 

  98. Roberts, J.W., Jarman, J.C., Johnstone, D.N., Midgley, P.A., Chalker, P.R., Oliver, R.A., et al.: α-Ga2O3 grown by low temperature atomic layer deposition on sapphire. J. Cryst. Growth 487, 23–27 (2018)

    Article  CAS  Google Scholar 

  99. Roberts, J.W., Chalker, P.R., Ding, B., Oliver, R.A., Gibbon, J.T., Jones, L.A.H., et al.: Low temperature growth and optical properties of α-Ga2O3 deposited on sapphire by plasma enhanced atomic layer deposition. J. Cryst. Growth 528, 125254 (2019)

    Article  CAS  Google Scholar 

  100. Massabuau, F.-P., Roberts, J., Nicol, D., Edwards, P., McLelland, M., Dallas, G., et al.: Progress in atomic layer deposited α-Ga2O3 materials and solar-blind detectors. Oxide-Based Mater. Devices XII Int. Soc. Optics Photonics 11687, 116870Q (2021)

    Google Scholar 

  101. Wheeler, V.D., Nepal, N., Boris, D.R., Qadri, S.B., Nyakiti, L.O., Lang, A., et al.: Phase control of crystalline Ga2O3 films by plasma-enhanced atomic layer deposition. Chem. Mater. 32, 1140–1152 (2020)

    Article  CAS  Google Scholar 

  102. Moloney, J., Tesh, O., Singh, M., Roberts, J.W., Jarman, J.C., Lee, L.C., et al.: Atomic layer deposited α-Ga2O3 solar-blind photodetectors. J. Phys. D Appl. Phys. 52, 475101 (2019)

    Article  CAS  Google Scholar 

  103. Lee, S.H., Lee, K.M., Kim, Y.-B., Moon, Y.-J., Kim, S.B., Bae, D., et al.: Sub-microsecond response time deep-ultraviolet photodetectors using α-Ga2O3 thin films grown via low-temperature atomic layer deposition. J. Alloy. Compd. 780, 400–407 (2019)

    Article  CAS  Google Scholar 

  104. Schewski, R., Wagner, G., Baldini, M., Gogova, D., Galazka, Z., Schulz, T., et al.: Epitaxial stabilization of pseudomorphic α-Ga2O3 on sapphire (0001). Appl. Phys. Express 8, 011101 (2015)

    Article  CAS  Google Scholar 

  105. Sun, H., Li, K.-H., Castanedo, C.G.T., Okur, S., Tompa, G.S., Salagaj, T., et al.: HCl flow-induced phase change of α-, β-, and ε-Ga2O3 films grown by MOCVD. Cryst. Growth Des. 18, 2370–2376 (2018)

    Article  CAS  Google Scholar 

  106. Hou, X., Sun, H., Long, S., Tompa, G.S., Salagaj, T., Qin, Y., et al.: Ultrahigh-performance solar-blind photodetector based on α-phase- dominated Ga2O3 film with record low dark current of 81 fA. IEEE Electron Device Lett. 40, 1483–1486 (2019)

    Article  CAS  Google Scholar 

  107. Egyenes-Pörsök, F., Gucmann, F., Hušeková, K., Dobročka, E., Sobota, M., Mikolášek, M., et al.: Growth of α- and β-Ga2O3 epitaxial layers on sapphire substrates using liquid-injection MOCVD. Semicond. Sci. Technol. 35, 115002 (2020)

    Article  Google Scholar 

  108. Polyakov, A.Y., Smirnov, N.B., Shchemerov, I.V., Yakimov, E.B., Nikolaev, V.I., Stepanov, S.I., et al.: Deep trap spectra of Sn-doped α-Ga2O3 grown by halide vapor phase epitaxy on sapphire. APL Mater. 7, 051103 (2019)

    Article  Google Scholar 

  109. Morimoto, S., Nishinaka, H., Yoshimoto, M.: Growth and characterization of F-doped α-Ga2O3 thin films with low electrical resistivity. Thin Solid Films 682, 18–23 (2019)

    Article  CAS  Google Scholar 

  110. Sharma, A., Singisetti, U.: Low field electron transport in α-Ga2O3: an ab initio approach. Appl. Phys. Lett. 118, 032101 (2021)

    Article  CAS  Google Scholar 

  111. Oda, M., Tokuda, R., Kambara, H., Tanikawa, T., Sasaki, T., Hitora, T.: Schottky barrier diodes of corundum-structured gallium oxide showing on-resistance of 0.1 mΩ·cm2 grown by MIST EPITAXY®. Appl. Phys. Express 9, 021101 (2016)

    Article  Google Scholar 

  112. Dang, G.T., Kawaharamura, T., Furuta, M., Allen, M.W.: Mist-CVD grown Sn-doped α-Ga2O3 MESFETs. IEEE Trans. Electron Devices 62, 3640–3644 (2015)

    Article  CAS  Google Scholar 

  113. Qiao, G., Cai, Q., Ma, T., Wang, J., Chen, X., Xu, Y., et al.: Nanoplasmonically enhanced high-performance metastable phase alpha-Ga2O3 solar-blind photodetectors. ACS Appl. Mater. Interf. 11, 40283–40289 (2019)

    Article  CAS  Google Scholar 

  114. Bae, J., Jeon, D.-W., Park, J.-H., Kim, J.: High responsivity solar-blind metal-semiconductor-metal photodetector based on α-Ga2O3. J. Vac. Sci. Technol. A 39, 033410 (2021)

    Article  CAS  Google Scholar 

  115. Yan, X., Shatalov, M., Saxena, T., Shur, M.S.: Deep-ultraviolet tailored-and low-refractive index antireflection coatings for light-extraction enhancement of light emitting diodes. J. Appl. Phys. 113, 163105 (2013)

    Article  Google Scholar 

  116. Ma, S., Feng, S., Kang, S., Wang, F., Fu, X., Lu, W.: A high performance solar-blind detector based on mixed–phase Zn 0.45 Mg 0.55 O alloy nanowires network. Electron. Mater. Lett. 15, 303–313 (2019)

Download references

Acknowledgements

D. Yang, B. Kim, and T. H. Eom contributed equally to this work. This research was supported by the Strategic Core Material Development Program through the Korea Evaluation Institute of Industrial Technology (KEIT) funded by the Ministry of Trade, Industry, and Energy (MOTIE) (No.10080736). The Inter-University Semiconductor Research Center and Institute of Engineering Research at Seoul National University provided research facilities for this work.

Author information

Authors and Affiliations

Authors

Contributions

D. Yang, B. Kim, T. H. Eom, Y. J. Park, and H. W. Jang conceived of the outline of the manuscript. D. Yang, B. Kim, T. H. Eom wrote the manuscript.

Corresponding author

Correspondence to Ho Won Jang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, D., Kim, B., Eom, T.H. et al. Epitaxial Growth of Alpha Gallium Oxide Thin Films on Sapphire Substrates for Electronic and Optoelectronic Devices: Progress and Perspective. Electron. Mater. Lett. 18, 113–128 (2022). https://doi.org/10.1007/s13391-021-00333-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-021-00333-5

Keywords

Navigation