Skip to main content
Log in

Mechanical properties of single- and double-walled carbon nanotubes under hydrostatic pressure

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Based on a molecular mechanics coupled with atomistic-based continuum theory, a closed-form formula is presented to examine the elastic properties of single- and double-walled carbon nanotubes subjected to hydrostatic pressure. Following the present model, the effects of the armchair and zigzag CNT structures on the pressure behavior are theoretically investigated. The computational result indicates that the bulk modulus is less sensitive to the chiral structures except for very small tube diameters. Moreover, closed-end nanotubes under hydrostatic pressure exhibit a larger bulking modulus than open ended nanotubes. The cap of the zigzag tubes has a larger effect on the bulk modulus when compared to the armchair tubes, especially in small diameter nanotubes. The predicted strain and the bulk modulus are in good agreement with existing theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vaccarini L, Goze C, Henrard L, Hernandez E, Bernier P, Rubio A (2000) Carbon 38:1681

    Article  Google Scholar 

  2. Salvetat JP, Bonard JM, Thomson NH, Kulik AJ, Forro L, Benoit W, Zuppiroli L (1999) Appl. Phys. A: Mater. Sci. Process. 69:255

    Article  Google Scholar 

  3. Wong EW, Sheehan PE, Liebe CM (1997) Science 277:1971

    Article  Google Scholar 

  4. Treacy MMJ, Ebbesen TW, Gibson JM (1996) Nature (London) 381:678

    Article  Google Scholar 

  5. Ruoff RS, Lorents DC (1995) Carbon 33:925

    Article  Google Scholar 

  6. Lau KT, Hui D (2002) Composites: Part B 33:263

    Article  Google Scholar 

  7. Schadler LS, Giannaris SC, Ajayan PM (1998) Appl. Phys. Lett. 73:3842

    Article  Google Scholar 

  8. Krishnan A, Dujardin E, Ebbesen TW, Yianilos PN, Treacy MMJ (1998) Phys. Rev. B 58:14013

    Article  Google Scholar 

  9. Yakobson BI, Brabec CJ, Bernholc J (1996) Phys. Rev. Lett. 76:2511

    Article  PubMed  Google Scholar 

  10. Lu JP (1997) Phys. Rev. Lett. 79:1297

    Article  Google Scholar 

  11. Dresselhaus MS, Dresselhaus G, Saito R (1995) Carbon 33:883

    Article  Google Scholar 

  12. Zhang P, Huang Y, Geubelle PH, Klein PA, Hwang KC (2002) Int. J. Solids Struct. 39:3893

    Article  Google Scholar 

  13. Natsuki T, Tantrakan K, Endo M (2004) Carbon 42:39

    Article  Google Scholar 

  14. Reich S, Thomsen C, Ordejon P (2002) Phys. Rev. B 65:153407

    Article  Google Scholar 

  15. Li C, Chou TW (2004) Phys. Rev. B 69:073401

    Article  Google Scholar 

  16. Galanov BA, Galanov SB, Gogotsi Y (2002) J. Nanopart. Res. 4:207

    Article  Google Scholar 

  17. Sharma SM, Karmakar S, Sikka SK, Teredesai PV, Sood AK, Govindaraj A, Rao CNR (2001) Phys. Rev. B 63:205417

    Article  Google Scholar 

  18. Tang J, Qin LC, Sasaki T, Yudasaka M, Matsushita A, Iijima S (2000) Phys. Rev. Lett. 85:1887

    Article  PubMed  Google Scholar 

  19. Venkateswaran UD, Rao AM, Richter E, Menon M, Rinzler A, Smalley RE, Eklund PC (1999) Phys. Rev. B 59:10928

    Article  Google Scholar 

  20. Peters MJ, McNeil LE, Lu JP, Kahn D (2000) Phys. Rev. B 61:5939

    Article  Google Scholar 

  21. Kawasaki S, Matsuoka Y, Yokomae T, Nojima Y, Okino F, Touhara H, Kataura H (2005) Carbon 43:37

    Article  Google Scholar 

  22. Natsuki T, Tantrakarn K, Endo M (2004) Appl. Phys. A: Mater. Sci. Process. 79:117

    Article  Google Scholar 

  23. Shen L, Li J (2000) Phys. Rev. B 69:045414

    Article  Google Scholar 

  24. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW Kollman PA (1995) J Am Chem Soc 117:5179

    Article  Google Scholar 

  25. He XQ, Kitipornchai S, Liew KM (2005) J. Mech. Phys. Solids 53:303

    Article  Google Scholar 

  26. Zhang XH, Sun DY, Liu ZF, Gong XG (2004) Phys. Rev. B 70:035422

    Article  Google Scholar 

  27. Saito R, Matsuo R, Kimura T, Dresselhaus G, Dresselhaus MS (2001) Chem. Phys. Lett. 384:187

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Natsuki.

Additional information

PACS

61.46.+w; 62.20.Dc; 62.20.-x; 62.25.+g

Rights and permissions

Reprints and permissions

About this article

Cite this article

Natsuki, T., Hayashi, T. & Endo, M. Mechanical properties of single- and double-walled carbon nanotubes under hydrostatic pressure. Appl. Phys. A 83, 13–17 (2006). https://doi.org/10.1007/s00339-005-3462-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-005-3462-3

Keywords

Navigation