Skip to main content

Advertisement

Log in

Mechanical properties of group IV single-walled nanotubes: a finite element approach based on the density functional theory

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this article, the density functional theory is applied to characterize the mechanical properties of single-walled nanotubes of group IV of the periodic table. These materials include carbon nanotube, silicon nanotube, germanium nanotube, and stanene nanotube. (10,10) armchair nanotube is selected for the investigation. By establishing a link between potential energy expressions in molecular and structural mechanics, a finite element approach is proposed for modeling nanotubes. In the proposed model, the nanotubes are considered as an assemblage of beam elements. Young’s modulus of the nanotubes is computed by the proposed finite element model. Young’s modulus of carbon, silicon, germanium, and tin nanotubes are obtained as 1029, 159.82, 83.23, and 83.15 GPa, respectively, using the density functional theory. Also, the finite element approach gives the values as 1090, 154.67, 85.2, and 82.6 GPa, respectively. It is shown that the finite element model can predict the results of the density functional theory with good accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.

Code availability

The code required to reproduce these findings cannot be shared at this time due to technical or time limitations.

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    CAS  Google Scholar 

  2. Bethune DS, Kiang CH, de Vries MS, Gorman C, Savoy R, Vazquez J, Beyers R (1993) Cobalt-catalyzed growth of carbon nanotubes with single atomic layer walls. Nature 363:605–607

    CAS  Google Scholar 

  3. Iijima S, Ichihashi T (1993) Single shell carbon nanotubes of 1-nm diameter. Nature 363:603–605

    CAS  Google Scholar 

  4. Popov VN (2004) Carbon nanotubes: properties and application. Mater Sci Eng R 43:61–102

    Google Scholar 

  5. Treacy M, Ebbesen T, Gibson J (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381:678–680

    CAS  Google Scholar 

  6. Krishnan A, Dujardin E, Ebbesen TW, Yianilos PN, Treacy MMJ (1998) Young’s modulus of single-walled nanotubes. Phys Rev B 58:14013

    CAS  Google Scholar 

  7. Salvetat J-P, Briggs GAD, Bonard J-M, Bacsa RR, Kulik AJ, Stockli T, Burnham NA, Forro L (1999) Elastic and shear moduli of single-walled carbon nanotube ropes. Phys Rev Lett 82:944

    CAS  Google Scholar 

  8. Hernandez E, Goze C, Bernier P, Rubio A (1998) Elastic properties of C and BxCyNz composite nanotubes. Phys Rev Lett 80:4502

    CAS  Google Scholar 

  9. Van Lier G, Van Alsenoy C, Van Doren V, Geerlings P (2000) Ab initio study of the elastic properties of single-walled carbon nanotubes and graphene. Chem Phys Lett 326:181–185

    Google Scholar 

  10. Hernandez E, Goze C, Berneir P, Rubio A (1999) Elastic properties of single-wall nanotubes. Appl Phys A Mater Sci Process 68:287–292

    CAS  Google Scholar 

  11. Molina JM, Savinsky SS, Khokhriakov NV, Chem J (1996) A tight-binding model for calculations of structures and properties of graphitic nanotubes. Phys. 104:4652

    CAS  Google Scholar 

  12. Tsepes KI, Papanikos P (2005) Finite element modeling of single walled carbon nanotubes. Compos B Eng 36:468–477

    Google Scholar 

  13. Kalamkarvo AL, Georgiades AV, Rokkam SK, Veedu VP, Ghasemi-Nejhad MN (2006) Analytical and numerical techniques to predict carbon nanotubes properties. Int J Solids Struct 43:6832–6854

    Google Scholar 

  14. Ebrahimi A, Ehteshami H, Mohammadi M (2008) Density functional calculations of response of single-walled armchair carbon nanotubes to axial tension. Comput Mater Sci 41:486–492

    CAS  Google Scholar 

  15. Zang J-L, Yuan Q, Wang F-C, Zhao Y-P (2009) A comparative study of Young’s modulus of single-walled carbon nanotube by CPMD, MD and first principle simulations. Comput Mater Sci 46:621–625

    CAS  Google Scholar 

  16. Rafiee R, Heidarhaei M (2012) Investigation of chirality and diameter effects on the Young’s modulus of carbon nanotubes using non-linear potentials. Compos Struct 94:2460–2464

    Google Scholar 

  17. Zaeri MM, Ziaei-Rad S, Shahidi AR (2015) On the elastic constants of single walled carbon nanotubes. Procedia Mater Sci 11:666–671

    CAS  Google Scholar 

  18. Hung NT, Do Van Truong VVT, Saito R (2016) Intrinsic strength and failure behaviors of ultra-small single-walled carbon nanotubes. Comput Mater Sci 114:167–171

    Google Scholar 

  19. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    CAS  PubMed  Google Scholar 

  20. Cahangirov S, Topsakal M, Akturk E, Sahin H, Ciraci S (2009) Two- and one-dimensional honeycomb structures of silicon and germanium. Phys Rev Lett 102:236804

    CAS  PubMed  Google Scholar 

  21. Guzman-Verri GG, Lew LC, Voon Y (2007) Electronic structure of silicon-based nanostructures. Phys Rev B 76:075131

    Google Scholar 

  22. Bechstedt F, Matthes L, Gori P, Pulci O (2012) Infrared absorbance of silicene and germanene. Appl Phys Lett 100:261906

    Google Scholar 

  23. Matthes L, Gori P, Pulci O, Bechstedt F (2013) Universal infrared absorbance of two-dimensional honeycomb group-IV crystals. Phys Rev B 87:035438

    Google Scholar 

  24. Matthes L, Pulci O, Bechstedt F (2013) Massive Dirac quasiparticles in the optical absorbance of graphene, silicene, germanene, and tinene. J Phys Condens Matter 25:395305

    PubMed  Google Scholar 

  25. Xu Y, Yan B, Zhang HJ, Wang J, Xu G, Tang P, Duan W, Zhang SC (2013) Large-gap quantum spin hall insulators in tin films. Phys Rev Lett 111:136804

    PubMed  Google Scholar 

  26. Broek BVD, Houssa M, Scalise E, Pourtois G, Afanasev VV, Stesmans A (2014) Two-dimensional hexagonal tin: ab initio geometry, stability, electronic structure and functionalization. 2D Mater 1:021004

    Google Scholar 

  27. Balendhran S, Walia S, Nili H, Sriram S, Bhaskaran M (2015) Elemental analogues of graphene: silicene, germanene, stanene, and phosphorene. Small 11:640

    CAS  PubMed  Google Scholar 

  28. Mortazavi B, Rahaman O, Makaremi M, Dianat A (2017) First-principles investigation of mechanical properties of silicene, germanene and stanine. Phys E 87:228–232

    CAS  Google Scholar 

  29. Byun KR, Kang JW, Hwang HJ (2003) Atomistic simulation of hypothetical silicon nanotubes under tension. J Korean Phys Soc 42(5):635–646

    CAS  Google Scholar 

  30. Veena Verma K, Dharamvir K, Jindal VK (2008) Structure and elastic modulii of silicon nanotubes. J Nano Res 2:85–90

    Google Scholar 

  31. Setoodeh AR, Attariani H, Jahanshahi M (2011) Mechanical properties of silicon-germanium nanotubes under tensile and compressive loadings. J Nano Res 15:105–114

    CAS  Google Scholar 

  32. Abbasi A, Sardroodi JJ (2018) Structural and electronic properties of group-IV tin nanotubes and their effects on the adsorption of SO2 molecules: insights from DFT computations. J Appl Phys 124:165302

    Google Scholar 

  33. Lin K, Zhao YP (2019) Mechanical peeling of van der Waals heterostructures: theory and simulations. Extreme Mech Lett 30:100501

    Google Scholar 

  34. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  35. Perdew JP, Burke K, Wang Y (1996) Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys Rev B 54(16533)

  36. Odegard GM, Gates TS, Nicholson LM, Wise KE (2002) Equivalent continuum modelling of nano-structured materials. Compos Sci Technol 62(14):1869–1880

    CAS  Google Scholar 

  37. Li C, Chou TW (2003) Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces. Compos Sci Technol 63(11):1517–1524

    CAS  Google Scholar 

  38. Rappe AK, Casemit CJ, Colwell KS, Goddard WA, Skiff WM (1992) UFF, a full periodic table force-field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114(25):10024–10035

    CAS  Google Scholar 

  39. Li C, Chou TW (2003) A structural mechanics approach for the analysis of carbon nanotubes. Int J Solids Struct 40:2487–2499

    Google Scholar 

  40. B.R. Gelin, Molecular modeling of polymer structures and properties, Hanser Publ.; Hanser/Gardner Publ. (1994)

  41. Chang T, Gao H (2003) Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics’ model. J Mech Phys Solids 51:1059–1074

    CAS  Google Scholar 

  42. Ansari R, Rouhi S (2010) Atomistic finite element model for axial buckling of single walled carbon nanotubes. Physica E: Low -Dimens Syst Nanostruct 43:58–69

    CAS  Google Scholar 

  43. Rouhi S, Ansari R (2012) Atomistic finite element model for axial buckling and vibration analysis of single-layered graphene sheets. Physica E: Low -Dimens Syst Nanostruct 44:764–772

    CAS  Google Scholar 

  44. Ansari R, Rouhi S, Aryayi M, Mirnezhad M (2012) On the buckling behavior of single walled silicon carbide nanotubes. ScientiaIranica 19:1984–1990

    CAS  Google Scholar 

  45. Ansari R, Rouhi S, Mirnezhad M, Aryayi M (2013) Stability characteristics of single layered silicon carbide nanosheets under uniaxial compression. Physica E: Low - Dimens Syst Nanostruct 53:22–28

    CAS  Google Scholar 

  46. Ansari R, Rouhi S, Mirnezhad M, Aryayi M (2015) Stability characteristics of single walled boron nitride nanotubes. Arch Civ Mech Eng 15:162–170

    Google Scholar 

  47. Douglas Vodnik, The Young’s modulus of single-walled carbon nanotubes, Department of Physics, Carthage College, Kenosha

  48. Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 23:5048

    CAS  Google Scholar 

  49. Perim E, Paupitz R, Botari T, Galvao DS (16, 2014) One-dimensional silicon and germanium nanostructures with no carbon analogues. Phys.Chem.Chem.Phys:24570

  50. Dávila ME, Xian L, Cahangirov S, Rubio A, Le Lay G (2014) Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene. New J Phys 16:095002

    Google Scholar 

  51. Saxena S, Chaudhary R, Shukla S (2016) Stanene: atomically thick free-standing layer of 2D hexagonal tin. Sci Rep 6:31073

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M. Dastmard: Conceptualization, methodology, software. R. Ansari: Supervision, conceptualization, writing—review and editing. S. Rouhi: Methodology and software.

Corresponding author

Correspondence to R. Ansari.

Ethics declarations

Ethics approval and consent to participate

N/A.

Consent for publication

N/A.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dastmard, M., Ansari, R. & Rouhi, S. Mechanical properties of group IV single-walled nanotubes: a finite element approach based on the density functional theory. J Mol Model 27, 163 (2021). https://doi.org/10.1007/s00894-021-04776-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04776-3

Keywords

Navigation