Skip to main content
Log in

Effects of carbon nanotube structures on mechanical properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper describes a structural mechanics approach to modelling the mechanical properties of carbon nanotubes (CNTs). Based on a model of truss structures linked by inter-atomic potentials, a closed-form elastic solution is obtained to predict the mechanical properties of single-walled carbon nanotubes (SWNTs). Moreover, the elastic modulus of multi-walled carbon nanotubes (MWNTs) is also predicted for a group of the above mentioned SWNTs with uniform interval spacing. Following the structural mechanics approach, the elastic modulus, Poisson’s ratio, and the deformation behaviors of SWNTs were investigated as a function of the nanotube size and structure. Poisson’s ratio of SWNTs shows a chirality dependence, while the elastic modulus is insensitive to the chirality. The disposition of the strain energy of bonds shows quite a difference between the zigzag and armchair tubes subjected to axial loading. A zigzag tube is predicted to have a lower elongation property than an armchair tube.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.T. Lau, D. Hui: Composites: Part B 33, 263 (2002)

    Article  Google Scholar 

  2. B.I. Yakobson, P.H. Avour, in: Carbon nanotubes, Chapt. 9, ed. by M.S. Dresselhaus, P.H. Avouris, (Springer Verlag, Berlin-Heidelberg 2001) p. 287

  3. E.T. Thostenson, Z. Ren, T.W. Chou: Comp. Sci. Tech. 61, 1899 (2001)

    Article  Google Scholar 

  4. L. Vaccarini, C. Goze, L. Henrard, E. Hernandez, P. Bernier, A. Rubio: Carbon 38, 1681 (2000)

    Article  Google Scholar 

  5. J.P. Salvetat, J.M. Bonard, N.H. Thomson, A.J. Kulik, L. Forro, W. Benoit, L. Zuppiroli: Appl. Phys. A 69, 255 (1999)

    Article  ADS  Google Scholar 

  6. L.S. Schadler, S.C. Giannaris, P.M. Ajayan: Appl. Phys. Lett. 73, 3842 (1998)

    Article  ADS  Google Scholar 

  7. D. Qian, E.C. Dickey, R. Andrews, T. Rantell: Appl. Phys. Lett. 76, 2868 (2000)

    Article  ADS  Google Scholar 

  8. M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson: Nature 381, 678 (1996)

    Article  ADS  Google Scholar 

  9. E.W. Wong, P.E. Sheehan, C.M. Lieber: Sci. 277, 1971 (1997)

    Article  Google Scholar 

  10. M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff: Sci. 287, 637 (2000)

    Article  ADS  Google Scholar 

  11. A. Krishnan, E. Dujardin, T.W. Ebbesen, P.N. Yianilos, M.M.J. Treacy: Phys. Rev. B 58, 14013 (1998)

    Article  ADS  Google Scholar 

  12. M.F. Yu, B.S. Files, S. Arepalli, R.S. Ruoff: Phys. Rev. Lett. 84, 5552 (2000)

    Article  ADS  Google Scholar 

  13. B.I. Yakobson, C.J. Brabec, J. Bernholc: Phys. Rev. Lett. 76, 2511 (1996)

    Article  ADS  Google Scholar 

  14. B.I. Yakobson: Appl. Phys. Lett. 72, 918 (1998)

    Article  Google Scholar 

  15. M.B. Nardelli, B.I. Yakobson, J. Bernholc: Phys. Rev. B 57, R4277 (1998)

  16. K.N. Kudin, G.E. Scuseria, B.I. Yakobson: Phys. Rev. B 64, 235406 (2001)

    Article  ADS  Google Scholar 

  17. E. Hernandez, C. Goze, P. Bernier, A. Rubio: Phys. Rev. Lett. 80, 4502 (1998)

    Article  ADS  Google Scholar 

  18. E. Hernandez, C. Goze, P. Bernier, A. Rubio: Appl. Phys. A. 68, 287 (1999)

    ADS  Google Scholar 

  19. G.V. Lier, C.V. Alsenoy, V.V. Doren, P. Geerlings: Chem. Phys. Lett. 326, 181 (2000)

    Article  ADS  Google Scholar 

  20. J.P. Lu: J. Phys. Chem. Solids. 58, 1649 (1997)

    Article  ADS  Google Scholar 

  21. J.P. Lu: Phys. Rev. Lett. 79, 1297 (1997)

    Article  ADS  Google Scholar 

  22. G.M. Odegard, T.S. Gates, L.M. Nicholson, K.E. Wise: NASA Langley Res. Center, NASA-2002-TM211454

  23. G.M. Odegard, V.M. Harik, K.E. Wise, T.S. Gates: NASA Langley Res. Center, NASA-2001-TM211044

  24. R.S. Ruoff, D.C. Lorents: Carbon 33, 925 (1995)

    Article  Google Scholar 

  25. S. Govindjee, J.L. Sackman: Solid State Commun. 110, 227 (1999)

    Article  ADS  Google Scholar 

  26. Z.H. Tu, Z.C. Ou-Yang: Phys. Rev. B 65, 233407 (2002)

    Article  ADS  Google Scholar 

  27. M.S. Dresselhaus, G. Dresselhaus, R. Saito: Carbon 33, 883 (1995)

    Article  Google Scholar 

  28. C.F. Cornwell, L.T. Wille: Solid State Commun. 101, 555 (1997)

    Article  ADS  Google Scholar 

  29. S.B. Sinnott, O.A. Shenderova, C.T. White, D.W. Brenner: Carbon 36, 1 (1998)

    Article  Google Scholar 

  30. T. Vodenitcharova, L.C. Zhang: Phys. Rev. B 68, 165401 (2003)

    Article  ADS  Google Scholar 

  31. W.D. Cornell, P. Cieplak, C.I. Bayly, I.R. Gould, K.M. Merz, D.M. Ferguson, D.C. Spellmeyer, T. Fox, J.W. Caldwell, P.A. Kollman: J. Am. Chem. Soc. 117, 5179 (1995)

    Article  Google Scholar 

  32. V.N. Popov, V.E. Van Doren, M. Balkanski: Phys. Rev. B 61, 3078 (2000)

    Article  ADS  Google Scholar 

  33. D. Srivastava, M. Menon, K. Cho: Phys. Rev. Lett. 83, 2973 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Endo.

Additional information

PACS

62.20-x; 62.20.Dc; 62.25+g

Rights and permissions

Reprints and permissions

About this article

Cite this article

Natsuki, T., Tantrakarn, K. & Endo, M. Effects of carbon nanotube structures on mechanical properties. Appl. Phys. A 79, 117–124 (2004). https://doi.org/10.1007/s00339-003-2492-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-003-2492-y

Keywords

Navigation