Skip to main content
Log in

Structure and electronic properties of deformed single-walled carbon nanotubes: quantum calculations

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The electronic properties of single-walled carbon nanotubes (SWCNTs) can be modified by deforming their structure under high pressure. The aim of this study was to use quantum calculations to investigate one such property, the energy band gap, in relation to molecular structures of armchair and zigzag SWCNTs of various sizes and shapes deformed by applied forces. To model the increase in pressure, the degree of flatness (η) of the SWCNTs was adjusted as the primary parameter. The calculations gave accurate C-C bond lengths of the SWCNTs in their distorted states; these distortions significantly affected the electronic properties, especially the energy band gap of the SWCNTs. These results may contribute to a more refined design of new nano-electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Avramov PV, Kudin KN, Scuseria GE (2003) Single wall carbon nanotubes density of states: comparison of experiment and theory Chem Phys Lett 370:597–601

    Article  CAS  Google Scholar 

  2. Dresselhaus MS, Dresselhaus G, Saito R, Jorio A (2005) Raman spectroscopy of carbon nanotubes Phys Rep 409:47–99

    Article  Google Scholar 

  3. Kim C, Kim B, Lee S, Jo C, Lee Y (2002) Electronic structures of capped carbon nanotubes under electric fields Phys Rev B 65:165418

    Article  Google Scholar 

  4. McEuen PL, Bockrath M, Cobden DH, Yoon Y-G, Louie SG (1999) Disorder, pseudospins, and backscattering in carbon nanotubes Phys Rev Lett 83:5098–5101

    Article  CAS  Google Scholar 

  5. Poklonski NA, Kislyakov EF, Hieu NN, Bubel’ ON, Vyrko SA, Popov AM, Lozovik YE (2008) Uniaxially deformed (5,5) carbon nanotube: structural transitions Chem Phys Lett 464:187–191

    Article  CAS  Google Scholar 

  6. Qian D, Wagner GJ, Liu WK, Yu M-F, Ruoff RS (2002) Mechanics of carbon nanotubes Appl Mech Rev 55:495

    Article  Google Scholar 

  7. Saito R, Dresselhaus G, Dresselhaus MS (1998) Physicals properties of carbon nanotube. Imperial College Press, London

  8. Yu G, Li G, Jia Y, Tang G (2015) Influence of uniaxial strain on the linear optical spectra in the metallic single-walled carbon nanotubes Phys B Condens Matter 479:74–78

    Article  CAS  Google Scholar 

  9. Dinadayalane TC, Murray JS, Concha MC, Politzer P, Leszczynski J (2010) Reactivities of sites on (5,5) single-walled carbon nanotubes with and without a Stone-Wales defect J Chem Theory Comput 6:1351–1357

    Article  CAS  Google Scholar 

  10. Saha S, Dinadayalane TC, Leszczynska D, Leszczynski J (2012) Open and capped (5,5) armchair SWCNTs: a comparative study of DFT-based reactivity descriptors Chem Phys Lett 541:85–91

    Article  CAS  Google Scholar 

  11. Saha S, Dinadayalane TC, Murray JS, Leszczynska D, Leszczynski J (2012) Surface reactivity for chlorination on chlorinated (5,5) armchair SWCNT: a computational approach J Phys Chem C 116:22399–22410

    Article  CAS  Google Scholar 

  12. Saha S, Dinadayalane TC, Leszczynska D, Leszczynski J (2013) DFT-based reactivity study of (5,5) armchair boron nitride nanotube (BNNT) Chem Phys Lett 565:69–73

    Article  CAS  Google Scholar 

  13. Qing Q, Nezich DA, Kong J, Wu Z, Liu Z (2010) Local gate effect of mechanically deformed crossed carbon nanotube junction Nano Lett 10:4715–4720

    Article  CAS  Google Scholar 

  14. Falvo MR, Clary GJ, Taylor RM, Chi V, Brooks FP, Washburn S, Superfine R (1997) Bending and buckling of carbon nanotubes under large strain Nature 389:582–584

    Article  CAS  Google Scholar 

  15. Bezryadin A, Verschueren ARM, Tans SJ, Dekker C (1998) Multiprobe transport experiments on individual single-wall carbon nanotubes Phys Rev Lett 80:4036–4039

    Article  CAS  Google Scholar 

  16. Chopra NG, Benedict LX, Crespi VH, Cohen ML, Louie SG, Zettl A (1995) Fully collapsed carbon nanotubes Nature 377:135–138

    Article  CAS  Google Scholar 

  17. Yang X, Wu G, Zhou J, Dong J (2006) Single-walled carbon nanotube bundle under hydrostatic pressure studied by first-principles calculations Phys Rev B 73:235403

    Article  Google Scholar 

  18. Tang J, Qin LC, Sasaki T, Yudasaka M, Matsushita A, Iijima S (2002) Revealing properties of single-walled carbon nanotubes under high pressure Journal of Physics-Condensed Matter 14:10575–10578

    Article  CAS  Google Scholar 

  19. Gadagkar V, Maiti PK, Lansac Y, Jagota A, Sood AK (2006) Collapse of double-walled carbon nanotube bundles under hydrostatic pressure Phys Rev B 73:085402

    Article  Google Scholar 

  20. Shan G, Bao S (2006) The effect of deformations on electronic structures and optical properties of carbon nanotubes Physica E: Low-dimensional Systems and Nanostructures 35:161–167

    Article  CAS  Google Scholar 

  21. Peters MJ, McNeil LE, Lu JP, Kahn D (2000) Structural phase transition in carbon nanotube bundles under pressure Phys Rev B 61:5939–5944

    Article  CAS  Google Scholar 

  22. Liu B, Jiang H, Johnson HT, Huang Y (2004) The influence of mechanical deformation on the electrical properties of single wall carbon nanotubes J Mech Phys Solids 52:1–26

    Article  CAS  Google Scholar 

  23. Nishidate K, Hasegawa M (2008) Universal band gap modulation by radial deformation in semiconductor single-walled carbon nanotubes Phys Rev B 78:195403

    Article  Google Scholar 

  24. Rochefort A, Salahub DR, Avouris P (1998) The effect of structural distortions on the electronic structure of carbon nanotubes Chem Phys Lett 297:45–50

    Article  CAS  Google Scholar 

  25. Mazzoni MSC, Chacham H (2000) Bandgap closure of a flattened semiconductor carbon nanotube: a first-principles study Appl Phys Lett 76:1561–1563

    Article  CAS  Google Scholar 

  26. Clark Stewart J, Segall Matthew D, Pickard Chris J, Hasnip Phil J, Probert Matt IJ, Refson K, Payne Mike C (2005) First principles methods using CASTEP Zeitschrift für Kristallographie - Crystalline Materials 220:567

    Google Scholar 

  27. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  28. Ito T, Nishidate K, Baba M, Hasegawa M (2002) First principles calculations for electronic band structure of single-walled carbon nanotube under uniaxial strain Surf Sci 514:222–226

    Article  CAS  Google Scholar 

  29. Matsuda Y, Tahir-Kheli J, Goddard WA (2010) Definitive band gaps for single-wall carbon nanotubes J Phys Chem Lett 1:2946–2950

    Article  CAS  Google Scholar 

  30. Shan B, Lakatos GW, Peng S, Cho K (2005) First-principles study of band-gap change in deformed nanotubes Appl Phys Lett 87:173109

    Article  Google Scholar 

  31. Ouyang M, Huang JL, Cheung CL, Lieber CM (2001) Energy gaps in “metallic” single-walled carbon nanotubes Science 292:702–705

    Article  CAS  Google Scholar 

  32. Imtani AN, Jindal VK (2009) Pressure effects on bond lengths and shape of zigzag single-walled carbon nanotubes Comput Mater Sci 44:1142–1149

    Article  CAS  Google Scholar 

  33. Pullen A, Zhao G, Bagayoko D, Yang L (2005) Structural, elastic, and electronic properties of deformed carbon nanotubes under uniaxial strain Phys Rev B 71:205410

    Article  Google Scholar 

  34. Park C-J, Kim Y-H, Chang KJ (1999) Band-gap modification by radial deformation in carbon nanotubes Phys Rev B 60:10656–10659

    Article  CAS  Google Scholar 

  35. Umadevi D, Panigrahi S, Sastry GN (2014) Noncovalent interaction of carbon nanostructures Acc Chem Res 47:2574–2581

    Article  CAS  Google Scholar 

  36. Shtogun YV, Woods LM (2009) Electronic and magnetic properties of deformed and defective single wall carbon nanotubes Carbon 47:3252–3262

    Article  CAS  Google Scholar 

  37. Gülseren O, Yildirim T, Ciraci S, Kılıç Ç (2002) Reversible band-gap engineering in carbon nanotubes by radial deformation Phys Rev B 65:155410

    Article  Google Scholar 

  38. Yildirim T, Gulseren O, Ciraci S (2001) Exohydrogenated single-wall carbon nanotubes Phys Rev B 64:075404

    Article  Google Scholar 

  39. Reich S, Thomsen C, Ordejon P (2002) Electronic band structure of isolated and bundled carbon nanotubes Phys Rev B 65:155411

    Article  Google Scholar 

  40. Akai Y, Saito S (2005) Electronic structure, energetics and geometric structure of carbon nanotubes: a density-functional study Physica E: Low-dimensional Systems and Nanostructures 29:555–559

    Article  CAS  Google Scholar 

  41. Rochefort A, Salahub DR, Avouris P (1999) Effects of finite length on the electronic structure of carbon nanotubes J Phys Chem B 103:641–646

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from the 90th Anniversary of Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund) and National Research University Project, Office of Higher Education Commission (WCU-031-AM-57). TR thanks the Thailand Research Fund (IRG5780008). The Computational Chemistry Unit Cell (CCUC) at the Department of Chemistry, Faculty of Science, Chulalongkorn University, is acknowledged for computer resources and other facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Supot Hannongbua.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thompho, S., Saengsawang, O., Rungrotmongkol, T. et al. Structure and electronic properties of deformed single-walled carbon nanotubes: quantum calculations. Struct Chem 29, 39–47 (2018). https://doi.org/10.1007/s11224-017-0999-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-017-0999-7

Keywords

Navigation