Advertisement

Applied Physics A

, Volume 82, Issue 2, pp 219–222 | Cite as

Processing and modification of films made from recombinant spider silk proteins

  • D. Huemmerich
  • U. Slotta
  • T. ScheibelEmail author
Article

Abstract

Protein films represent an interesting class of materials with various possibilities for applications. We investigated films made of two different synthetic spider silk proteins derived from the garden spider’s (Araneus diadematus) two dragline silk proteins ADF-3 and ADF-4. Protein films cast from hexafluoroisopropanol solutions displayed a predominantly α-helical secondary structure. Processing such films with potassium phosphate or methanol resulted in a transition to a β-sheet rich structure. While as-cast films could be dissolved in water, processed β-sheet rich films were water insoluble. The chemical stability of processed films depended on the amino acid sequence of the respective protein employed. As a proof of principle, fluorescent probes or enzymes were covalently attached to the film surface. The presented approach provides a basis for designing tailor-made protein films using silk proteins as scaffold, in which the film properties can be controlled by genetic engineering of the underlying silks.

Keywords

Potassium Phosphate HFIP Silk Protein Spider Silk Guanidinium Thiocyanate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Panilaitis B, Altman GH, Chen J, Jin HJ, Karageorgiou V, Kaplan DL (2003) Biomaterials 24:3079CrossRefPubMedGoogle Scholar
  2. 2.
    Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL (2003) Biomaterials 24:401CrossRefPubMedGoogle Scholar
  3. 3.
    Scheibel T (2004) Microb. Cell Fact. 3:14CrossRefPubMedGoogle Scholar
  4. 4.
    Zhao C, Yao J, Masuda H, Kishore R, Asakura T (2003) Biopolymers 69:253CrossRefPubMedGoogle Scholar
  5. 5.
    Um IC, Kweon HY, Park YH, Hudson S (2001) Int. J. Biol. Macromol. 29:91CrossRefPubMedGoogle Scholar
  6. 6.
    Ha SW, Tonelli AE, Hudson SM (2005) Biomacromolecules 6:1722CrossRefPubMedGoogle Scholar
  7. 7.
    Chen X, Knight DP, Shao Z, Vollrath F (2002) Biochem. J. 41:14944CrossRefGoogle Scholar
  8. 8.
    Stephens JS, Fahnestock SR, Farmer RS, Kiick KL, Chase DB, Rabolt JF (2005) Biomacromolecules. 6:1405CrossRefPubMedGoogle Scholar
  9. 9.
    Sugihara A, Sugiura K, Morita H, Ninagawa T, Tubouchi K, Tobe R, Izumiya M, Horio T, Abraham NG, Ikehara S (2000) Proc. Soc. Exp. Biol. Med. 225:58CrossRefPubMedGoogle Scholar
  10. 10.
    Demura M, Takekawa T, Asakura T, Nishikawa A (1992) Biomaterials 13:276CrossRefPubMedGoogle Scholar
  11. 11.
    Zhou CZ, Confalonieri F, Medina N, Zivanovic Y, Esnault C, Yang T, Jacquet M, Janin J, Duguet M, Perasso R, Li ZG (2000) Nucleic Acids Res. 28:2413CrossRefPubMedGoogle Scholar
  12. 12.
    Huemmerich D, Helsen CW, Quedzuweit S, Oschmann J, Rudolph R, Scheibel T (2004) Biochem. J. 43:13604CrossRefGoogle Scholar
  13. 13.
    Huemmerich D, Scheibel T, Vollrath F, Cohen S, Gat U, Ittah S (2004) Curr. Biol. 14:2070CrossRefPubMedGoogle Scholar
  14. 14.
    Sonnichsen FD, Van Eyk JE, Hodges RS, Sykes BD (1992) Biochem. J. 31:8790CrossRefGoogle Scholar
  15. 15.
    Gast K, Siemer A, Zirwer D, Damaschun G (2001) Eur. J. Biophys. 30:273CrossRefGoogle Scholar
  16. 16.
    J.M. Gosline, P.A. Guerette, C.S. Ortlepp, K.N. Savage, J. Exp. Biol. 23(202Pt):3295 (1999)Google Scholar
  17. 17.
    Arcidiacono S, Mello CM, Butler M, Welsh E, Soares JW, Allen A, Ziegler D, Laue T, Chase S (2002) Macromolecules 35:1262 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department Chemie, Lehrstuhl für BiotechnologieTechnische Universität MünchenGarchingGermany

Personalised recommendations