Coral Reefs

, Volume 32, Issue 2, pp 559–571 | Cite as

Baseline shifts in coral skeletal oxygen isotopic composition: a signature of symbiont shuffling?

  • J. E. Carilli
  • C. D. Charles
  • M. Garren
  • M. McField
  • R. D. Norris


Decades-long records of the stable isotopic composition of coral skeletal cores were analyzed from four sites on the Mesoamerican Reef. Two of the sites exhibited baseline shifts in oxygen isotopic composition after known coral bleaching events. Changes in pH at the calcification site caused by a change in the associated symbiont community are invoked to explain the observed shift in the isotopic composition. To test the hypothesis that changes in symbiont clade could affect skeletal chemistry, additional coral samples were collected from Belize for paired Symbiodinium identification and skeletal stable isotopic analysis. We found some evidence that skeletal stable isotopic composition may be affected by symbiont clade and suggest this is an important topic for future investigation. If different Symbiodinium clades leave consistent signatures in skeletal geochemical composition, the signature will provide a method to quantify past symbiont shuffling events, important for understanding how corals are likely to respond to climate change.


Symbiodinium Skeletal geochemistry Coral biomineralization Coral calcification Isotopic records 

Supplementary material

338_2012_1004_MOESM1_ESM.doc (34 kb)
Supplementary material 1 (DOC 33 kb)
338_2012_1004_MOESM2_ESM.eps (8.4 mb)
Supplementary material 2 (EPS 8602 kb)
338_2012_1004_MOESM3_ESM.eps (926 kb)
Supplementary material 3 (EPS 926 kb)
338_2012_1004_MOESM4_ESM.eps (1 mb)
Supplementary material 4 (EPS 1074 kb)
338_2012_1004_MOESM5_ESM.eps (293 kb)
Supplementary material 5 (EPS 293 kb)


  1. Abrego D, Ulstrup KE, Willis BL, Van Oppen MJH (2008) Species-specific interactions between algal endosymbionts and coral hosts define their bleaching response to heat and light stress. Proc R Soc B Biol Sci 275:2273–2282CrossRefGoogle Scholar
  2. Adkins JF, Boyle EA, Curry WB, Lutringer A (2003) Stable isotopes in deep-sea corals and a new mechanism for “vital effects”. Geochim Cosmochim Acta 67:1129–1143CrossRefGoogle Scholar
  3. Al-Horani F, Al-Moghrabi SM, de Beer D (2003) The mechanism of calcification and its relation to photosynthesis and respiration in the scleractinian coral Galaxea fascicularis. Mar Biol 142:419–426Google Scholar
  4. Allemand D, Tambutté É, Zoccola D, Tambutté S, Dubinsky Z, Stambler N (2011) Coral calcification, cells to reefs. In: Dubinsky Z, Stambler N (eds) Coral reefs: An ecosystem in transition. Springer, Netherlands, pp 119–150CrossRefGoogle Scholar
  5. Allison N, Tudhope AW, Fallick AE (1996) Factors influencing the stable carbon and oxygen isotopic composition of Porites lutea coral skeletons from Phuket, south Thailand. Coral Reefs 15:43–57Google Scholar
  6. Allison N, Finch AA, EIMF (2010) δ11B, Sr, Mg, and B in a modern Porites coral: The relationship between calcification site pH and skeletal chemistry. Geochim Cosmochim Acta 74:1790–1800CrossRefGoogle Scholar
  7. Banaszak AT, LaJeunesse TC, Trench RK (2000) The synthesis of mycosporine-like amino acids (MAAs) by cultured, symbiotic dinoflagellates. J Exp Mar Biol Ecol 249:219–233CrossRefGoogle Scholar
  8. Beck JW, Edwards RL, Ito E, Taylor FW, Recy J, Rougerie F, Joannot P, Henin C (1992) Sea-surface temperature from coral skeletal strontium/calcium ratios. Science 257:644–647PubMedCrossRefGoogle Scholar
  9. Berkelmans R, Van Oppen MJH (2006) The role of zooxanthellae in the thermal tolerance of corals: A ‘nugget of hope’ for coral reefs in an era of climate change. Proc R Soc B Biol Sci 273:2305CrossRefGoogle Scholar
  10. Brown BE (1997) Coral bleaching: Causes and consequences. Coral Reefs 16(Suppl):S129–S138CrossRefGoogle Scholar
  11. Buddemeier RW, Fautin DG (1993) Coral bleaching as an adaptive mechanism. Bioscience 43:320–326CrossRefGoogle Scholar
  12. Cantin NE, van Oppen MJH, Willis BL, Mieog JC, Negri AP (2009) Juvenile corals can acquire more carbon from high-performance algal symbionts. Coral Reefs 28:405–414CrossRefGoogle Scholar
  13. Carilli JE, Prouty NG, Hughen KA, Norris RD (2009a) Century-scale records of land-based activities recorded in Mesoamerican coral cores. Mar Pollut Bull 58:1835–1842PubMedCrossRefGoogle Scholar
  14. Carilli JE, Norris RD, Black BA, Walsh SM, McField M (2009b) Local stressors reduce coral resilience to bleaching. PLoS ONE 4:e6324PubMedCrossRefGoogle Scholar
  15. Charles CD, Hunter DE, Fairbanks RG (1997) Interaction between the ENSO and the Asian monsoon in a coral record of tropical climate. Science 277:925–928CrossRefGoogle Scholar
  16. Cobb K, Charles CD, Cheng H, Edwards RL (2003) El Niño/Southern Oscillation and the tropical Pacific climate during the last millennium. Nature 424:271–276PubMedCrossRefGoogle Scholar
  17. Coffroth MA, Santos SR (2005) Genetic diversity of symbiotic dinoflagellates in the genus Symbiodinium. Protist 156:19–34PubMedCrossRefGoogle Scholar
  18. Cohen A, McConnaughey TA (2003) Geochemical perspectives on coral mineralization. Rev Mineral Geochem 54:151–187CrossRefGoogle Scholar
  19. Colombo-Pallotta MF, Rodriguez-Roman A, Iglesias-Prieto R (2010) Calcification in bleached and unbleached Montastraea faveolata: Evaluating the role of oxygen and glycerol. Coral Reefs 29:899–907CrossRefGoogle Scholar
  20. de Villiers S, Greaves M, Elderfield H (2002) An intensity ratio calibration method for the accurate determination of Mg/Ca and Sr/Ca of marine carbonates by ICP-AES. Geochem Geophys Geosyst 3:1001CrossRefGoogle Scholar
  21. Draschba S, Patzold J, Wefer G (2000) North Atlantic climate variability since AD 1350 recorded in δ18O and skeletal density of Bermuda corals. Int J Earth Sci 88:733–741CrossRefGoogle Scholar
  22. Dunbar R, Wellington GM, Colgan MW, Glynn PW (1994) Eastern Pacific sea surface temperature since 1600 A.D.: The δ18O record of climate variability in Galápagos corals. Paleoceanography 9:291–316CrossRefGoogle Scholar
  23. Enfield DB, Mestas-Nunez AM, Trimble PJ (2001) The Atlantic Multidecadal Oscillation and its relation to rainfall and river flows in the continental U.S. Geophys Res Lett 28:2077–2080CrossRefGoogle Scholar
  24. Fairbanks R, Evans MN, Rubenstone JL, Mortlock RA, Broad K, Moore MD, Charles CD (1997) Evaluating climate indices and their geochemical proxies measured in corals. Coral Reefs 16:S93–S100CrossRefGoogle Scholar
  25. Felis T, Pätzold J, Loya Y (2003) Mean oxygen-isotope signatures in Porites spp. corals: Inter-colony variability and correction for extension-rate effects. Coral Reefs 22:328–336CrossRefGoogle Scholar
  26. Furla P, Galgani I, Durand I, Allemand D (2000) Sources and mechanisms of inorganic carbon transport for coral calcification and photosynthesis. J Exp Biol 203:3445–3457PubMedGoogle Scholar
  27. Gagan MK, Ayliffe LK, Hopley D, Cali JA, Mortimer GE, Chappell J, McCulloch MT, Head MJ (1998) Temperature and surface-ocean water balance of the mid-Holocene tropical western Pacific. Science 279:1014PubMedCrossRefGoogle Scholar
  28. Gagan MK, Ayliffe LK, Beck JW, Cole JE, Druffel ERM, Dunbar RB, Schrag DP (2000) New views of tropical paleoclimates from corals. Quaternary Sci Rev 19:45–64CrossRefGoogle Scholar
  29. Gagnon AC, Adkins JF, Erez J (2012) Seawater transport during coral biomineralization. Earth Planet Sci Lett 329:150–161CrossRefGoogle Scholar
  30. Garren M, Walsh S, Caccone A, Knowlton N (2006) Patterns of association between Symbiodinium and members of the Montastraea annularis species complex on spatial scales ranging from within colonies to between geographic regions. Coral Reefs 25:503–512CrossRefGoogle Scholar
  31. Gates RD, Hoegh-Guldberg O, McFall-Ngai MJ, Bil KY, Muscatine L (1995) Free amino acids exhibit anthozoan “host factor” activity: They induce the release of photosynthate from symbiotic dinoflagellates in vitro. Proc Natl Acad Sci USA 92:7430–7434PubMedCrossRefGoogle Scholar
  32. Gischler E, Oschmann W (2005) Historical climate variation in Belize (Central America) as recorded in scleractinian coral skeletons. Palaios 20:159–174CrossRefGoogle Scholar
  33. Goodkin NF, Hughen KA, Cohen AL, Smith SR (2005) Record of Little Ice Age sea surface temperatures at Bermuda using a growth-dependent calibration of coral Sr/Ca. Paleoceanography 20:PA4016CrossRefGoogle Scholar
  34. Goulet T (2006) Most corals may not change their symbionts. Mar Ecol Prog Ser 321:1–7CrossRefGoogle Scholar
  35. Goulet TL, Cook CB, Goulet D (2005) Effect of short-term exposure to elevated temperatures and light levels on photosynthesis of different host-symbiont combinations in the Aiptasia pallidal Symbiodinium symbiosis. Limnol Oceanogr 50:1490–1498CrossRefGoogle Scholar
  36. Grottoli AG (2000) Stable carbon isotopes (13C) in coral skeletons. Oceanography 13:93–97CrossRefGoogle Scholar
  37. Grottoli AG, Wellington GM (1999) Effect of light and zooplankton on skeletal 13C values in the eastern Pacific corals Pavona clavus and Pavona gigantea. Coral Reefs 18:29–41CrossRefGoogle Scholar
  38. Hartmann AC, Carilli JE, Norris RD, Charles CD, Deheyn DD (2010) Stable isotopic records of bleaching and endolithic algae blooms in the skeleton of the boulder forming coral Montastraea faveolata. Coral Reefs 29:1079–1089CrossRefGoogle Scholar
  39. Hennige SJ, Suggett DJ, Warner ME, McDougall KE, Smith DJ (2009) Photobiology of Symbiodinium revisited: Bio-physical and bio-optical signatures. Coral Reefs 28:179–195CrossRefGoogle Scholar
  40. Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science 269:676–679PubMedCrossRefGoogle Scholar
  41. Iglesias-Prieto R, Trench RK (1994) Acclimation and adaptation to irradiance in symbiotic dinoflagellates. I. Responses of the photosynthetic unit to changes in photon flux density. Mar Ecol Prog Ser 113:163–175CrossRefGoogle Scholar
  42. Keeling CD (1979) The Suess effect: 13Carbon–14Carbon interrelations. Environ Int 2:229–300CrossRefGoogle Scholar
  43. Kinzie RA III, Takayama M, Santos SR, Coffroth MA (2001) The adaptive bleaching hypothesis: Experimental tests of critical assumptions. Biol Bull 200:51–58PubMedCrossRefGoogle Scholar
  44. LaJeunesse T (2002) Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Mar Biol 141:387–400CrossRefGoogle Scholar
  45. Leder JJ, Swart PK, Szmant AM, Dodge RE (1996) The origin of variations in the isotopic record of scleractinian corals: I. Oxygen. Geochim Cosmochim Acta 60:2857–2870CrossRefGoogle Scholar
  46. Linsley BK, Messier RG, Dunbar RB (1999) Assessing between-colony oxygen isotope variability in the coral Porites lobata at Clipperton Atoll. Coral Reefs 18:13–27CrossRefGoogle Scholar
  47. Loram JE, Trapido-Rosenthal HG, Douglas AE (2007) Functional significance of genetically different symbiotic algae Symbiodinium in a coral reef symbiosis. Mol Ecol 16:4849–4857PubMedCrossRefGoogle Scholar
  48. Lough J (2000) 1997–98: Unprecedented thermal stress to coral reefs? Geophys Res Lett 27:3901–3904CrossRefGoogle Scholar
  49. McConnaughey T (1989) 13C and 18O isotopic disequilibrium in biological carbonates: I. Patterns. Geochim Cosmochim Acta 53:151–162CrossRefGoogle Scholar
  50. McConnaughey TA (2003) Sub-equilibrium oxygen-18 and carbon-13 levels in biological carbonates: Carbonate and kinetic models. Coral Reefs 22:316–327CrossRefGoogle Scholar
  51. McCulloch MT, Gagan MK, Mortimer GE, Chivas AR, Isdale PJ (1994) A high-resolution Sr/Ca and δ18O coral record from the Great Barrier Reef, Australia, and the 1982–1983 El Niño. Geochim Cosmochim Acta 58:2747–2754CrossRefGoogle Scholar
  52. McCulloch M, Falter J, Trotter J, Montagna P (2012) Coral resilience to ocean acidification and global warming through pH up-regulation. Nature Climate Change. doi: 10.1038/nclimate1473 Google Scholar
  53. McField M (1999) Coral response during and after mass bleaching in Belize. Bull Mar Sci 64:155–172Google Scholar
  54. McField M (2000) Influence of disturbance on coral reef community structure in Belize. Proc 9th Int Coral Reef Symp 1:63–68Google Scholar
  55. McGregor HV, Gagan MK (2004) Western Pacific coral δ18O records of anomalous Holocene variability in the El Niño-Southern Oscillation. Geophys Res Lett 31:L11204CrossRefGoogle Scholar
  56. Oliver TA, Palumbi SR (2011) Do fluctuating temperature environments elevate coral thermal tolerance? Coral Reefs 30:429–440CrossRefGoogle Scholar
  57. Penland C, Matrosova L (1998) Prediction of tropical Atlantic sea surface temperatures using linear inverse modeling. J Clim 11:483–496CrossRefGoogle Scholar
  58. Quinn T, Crowley TJ, Taylor FW, Henin Christian, Joannot P, Join Y (1998) A multicentury stable isotope record from a New Caledonia coral: Interannual and decadal sea surface temperature variability in the southwest Pacific since 1657 AD. Paleoceanography 13:412–426CrossRefGoogle Scholar
  59. Rayner N, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:4407CrossRefGoogle Scholar
  60. Ren L, Linsley BK, Wellington GM, Schrag DP, Hoegh-Guldberg O (2003) Deconvolving the δ18O seawater component from subseasonal coral δ18O and Sr/Ca at Rarotonga in the southwestern subtropical Pacific for the period 1726 to 1997. Geochim Cosmochim Acta 67:1609–1621CrossRefGoogle Scholar
  61. Reynolds JMC, Bruns BU, Fitt WK, Schmidt GW (2008) Enhanced photoprotection pathways in symbiotic dinoflagellates of shallow-water corals and other cnidarians. Proc Natl Acad Sci USA 105:13674PubMedCrossRefGoogle Scholar
  62. Risk M, Sherwood OA, Heikoop JM, Llewellyn G (2003) Smoke signals from corals: Isotopic signature of the 1997 Indonesian ‘haze’ event. Mar Geol 202:71–78CrossRefGoogle Scholar
  63. Rollion-Bard C, Chaussidon M, France-Lanord C (2003) pH control on oxygen isotopic composition of symbiotic corals. Earth Planet Sci Lett 215:275–288CrossRefGoogle Scholar
  64. Rowan R (2004) Coral bleaching: Thermal adaptation in reef coral symbionts. Nature 430:742PubMedCrossRefGoogle Scholar
  65. Rowan R, Powers DA (1991) A molecular genetic classification of zooxanthellae and the evolution of animal-algal symbioses. Science 251:1348PubMedCrossRefGoogle Scholar
  66. Rowan R, Knowlton N, Baker A, Jara J (1997) Landscape ecology of algal symbionts creates variation in episodes of coral bleaching. Nature 388:265–269PubMedCrossRefGoogle Scholar
  67. Savage AM, Trapido-Rosenthal H, Douglas AE (2002) On the functional significance of molecular variation in Symbiodinium, the symbiotic algae of cnidaria: Photosynthetic response to irradiance. Mar Ecol Prog Ser 244:27–37CrossRefGoogle Scholar
  68. Schrag DP (1999) Rapid analysis of high-precision Sr/Ca ratios in corals and other marine carbonates. Paleoceanography 14:97–102CrossRefGoogle Scholar
  69. Smith TM, Reynolds RW (2004) Improved extended reconstruction of SST (1854–1997). J Clim 17:2466–2477CrossRefGoogle Scholar
  70. Spero HJ, Bijma J, Lea DW, Bemis BE (1997) Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes. Nature 390:497–499CrossRefGoogle Scholar
  71. Stat M, Morris E, Gates RD (2008) Functional diversity in coral-dinoflagellate symbiosis. Proc Natl Acad Sci USA 105:9256PubMedCrossRefGoogle Scholar
  72. Swart PK, Leder JJ, Szmant AM, Dodge RE (1996) The origin of variations in the isotopic record of scleractinian corals: II. Carbon. Geochim Cosmochim Acta 60:2871–2885CrossRefGoogle Scholar
  73. Swart PK, Greer L, Rosenheim BE, Moses CS, Waite AJ, Winter A, Dodge RE, Helmle K (2009) The 13C Suess effect in scleractinian corals mirror changes in the anthropogenic CO2 inventory of the surface oceans. Geophys Res Lett 37:L05604Google Scholar
  74. Tambutté S, Holcomb M, Ferrier-Pagès C, Reynaud S, Tambutté É, Zoccola D, Allemand D (2011) Coral biomineralization: From the gene to the environment. J Exp Mar Biol Ecol 408:58–78CrossRefGoogle Scholar
  75. Thornhill DJ, LaJeunesse TC, Kemp DW, Fitt WK, Schmidt GW (2006) Multi-year, seasonal genotypic surveys of coral-algal symbioses reveal prevalent stability or post-bleaching reversion. Mar Biol 148:711–722CrossRefGoogle Scholar
  76. Thornhill DJ, Xiang Y, Fitt WK, Santos SR (2009) Reef endemism, host specificity and temporal stability in populations of symbiotic dinoflagellates from two ecologically dominant Caribbean corals. PLoS ONE 4:e6262PubMedCrossRefGoogle Scholar
  77. Toller W, Rowan R, Knowlton N (2001) Repopulation of zooxanthellae in the Caribbean corals Montastraea annularis and M. faveolata following experimental and disease-associated bleaching. Biol Bull 201:360–373PubMedCrossRefGoogle Scholar
  78. Tudhope AW, Chilcott CP, McCulloch MT, Cook ER, Chappell J, Ellam RM, Lea DW, Lough JM, Shimmield GB (2001) Variability in the El Niño-Southern Oscillation through a glacial-interglacial cycle. Science 291:1511–1517PubMedCrossRefGoogle Scholar
  79. Ulstrup KE, van Oppen MJH, Kühl M, Ralph PJ (2007) Inter-polyp genetic and physiological characterisation of Symbiodinium in an Acropora valida colony. Mar Biol 153:225–234CrossRefGoogle Scholar
  80. Ulstrup KE, Hill R, Van Oppen MJH, Larkum AWD, Ralph PJ (2008) Seasonal variation in the photo-physiology of homogeneous and heterogeneous symbiodinium consortia in two scleractinian corals. Mar Ecol Prog Ser 361:139–150CrossRefGoogle Scholar
  81. van Oppen M, Baker AC, Coffroth MA, Willis BL (2009) Bleaching resistance and the role of algal endosymbionts. In: van Oppen M, Lough JM (eds) Coral bleaching. Springer-Verlag, Berlin HeidelbergCrossRefGoogle Scholar
  82. Venn A, Tambutté E, Holcomb M, Allemand D, Tambutté S (2011) Live tissue imaging shows reef corals elevate pH under their calcifying tissue relative to seawater. PLoS ONE 6:e20013PubMedCrossRefGoogle Scholar
  83. Warner ME, LaJeunesse TC, Robison JD, Thur RM (2006) The ecological distribution and comparative photobiology of symbiotic dinoflagellates from reef corals in Belize: Potential implications for coral bleaching. Limnol Oceanogr 51:1887–1897CrossRefGoogle Scholar
  84. Weiner S, Dove PM (2003) An overview of biomineralization processes and the problem of the vital effect. Rev Mineral Geochem 54:1–29CrossRefGoogle Scholar
  85. Wolter K, Timlin MS (1998) Measuring the strength of ENSO events: How does 1997/98 rank? Weather 53:315–323CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • J. E. Carilli
    • 1
  • C. D. Charles
    • 2
  • M. Garren
    • 2
    • 3
  • M. McField
    • 4
  • R. D. Norris
    • 2
  1. 1.Institute for Environmental ResearchAustralian Nuclear Science and Technology OrganizationLucas HeightsAustralia
  2. 2.Scripps Institution of OceanographyUniversity of California San DiegoLa JollaUSA
  3. 3.Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  4. 4.Healthy Reefs for Healthy People InitiativeSmithsonian InstitutionBelize CityBelize

Personalised recommendations