Skip to main content

Advertisement

Log in

Mean oxygen-isotope signatures in Porites spp. corals: inter-colony variability and correction for extension-rate effects

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

The assessment of inter-colony variability in the mean skeletal δ18O signatures of modern Porites spp. corals is a prerequisite for the estimation of past mean climate conditions based on fossil colonies. Here we show that the mean δ18O signatures of Porites spp. corals from the northern end of the Gulf of Aqaba (Red Sea) with mean extension rates between 0.2 and 1.5 cm/year can have an inter-colony variability as large as 1.28‰. At extension rates of less than 0.6 cm/year the mean coral δ18O values of the individual colonies are strongly dependent on the mean extension rate, with increasingly higher δ18O values corresponding to decreasing extension rate. This suggests that extension-rate-related kinetic isotope disequilibrium effects are responsible for a large proportion of the inter-colony differences in the mean coral δ18O signatures. A correction procedure for these effects based on the relationship between mean δ18O values and mean extension rate reduces the variability of mean coral δ18O values among the individual colonies to 0.43‰. Although certainly not perfect, the correction procedure enables a better assessment of mid-Holocene climate conditions at this location based on Porites spp. with mean extension rates of less than 0.6 cm/year.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  • Adkins JF, Boyle EA, Curry WB, Lutringer A (2003) Stable isotopes in deep-sea corals and a new mechanism for “vital effects”. Geochim Cosmochim Acta 67:1129–1143

    Article  CAS  Google Scholar 

  • Allison N, Tudhope AW, Fallick AE (1996) Factors influencing the stable carbon and oxygen isotopic composition of Porites lutea coral skeletons from Phuket, south Thailand. Coral Reefs 15:43–57

    Article  Google Scholar 

  • Andrié C, Merlivat L (1989) Contribution des données isotopiques de deutérium, oxygène-18, hélium-3 et tritium, à l’étude de la circulation de la Mer Rouge. Oceanol Acta 12:165–174

    Google Scholar 

  • Charles CD, Hunter DE, Fairbanks RG (1997) Interaction between the ENSO and the Asian monsoon in a coral record of tropical climate. Science 277:925–928

    Article  CAS  Google Scholar 

  • Cohen AL, Hart SR (1997) The effect of colony topography on climate signals in coral skeleton. Geochim Cosmochim Acta 61:3905–3912

    CAS  Google Scholar 

  • Craig H (1966) Isotopic composition and origin of the Red Sea and Salton Sea geothermal brines. Science 154:1544–1548

    CAS  Google Scholar 

  • Epstein S, Buchsbaum R, Lowenstam HA, Urey HC (1953) Revised carbonate-water isotopic temperature scale. Bull Geol Soc Am 64:1315–1326

    CAS  Google Scholar 

  • Evans MN, Kaplan A, Cane MA (2000) Intercomparison of coral oxygen isotope data and historical sea surface temperature (SST): potential for coral-based SST field reconstructions. Paleoceanography 15:551–563

    Google Scholar 

  • Felis T, Pätzold J, Loya Y, Wefer G (1998) Vertical water mass mixing and plankton blooms recorded in skeletal stable carbon isotopes of a Red Sea coral. J Geophys Res 103:30731–30739

    Google Scholar 

  • Felis T, Pätzold J, Loya Y, Fine M, Nawar AH, Wefer G (2000) A coral oxygen isotope record from the northern Red Sea documenting NAO, ENSO, and North Pacific teleconnections on Middle East climate variability since the year 1750. Paleoceanography 15:679–694

    Google Scholar 

  • Gagan MK, Chivas AR, Isdale PJ (1994) High-resolution isotopic records from corals using ocean temperature and mass-spawning chronometers. Earth Planet Sci Lett 121:549–558

    Article  Google Scholar 

  • Grossman E, Ku T-L (1986) Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects. Chem Geol 59:59–74

    CAS  Google Scholar 

  • Grottoli AG (1999) Variability of stable isotopes and maximum linear extension in reef-coral skeletons at Kaneohe Bay, Hawaii. Mar Biol 135:437–449

    Article  Google Scholar 

  • Guilderson TP, Schrag DP (1999) Reliability of coral isotope records from the western Pacific warm pool: a comparison using age-optimized records. Paleoceanography 14:457–464

    Google Scholar 

  • Heikoop JM, Dunn JJ, Risk MJ, Schwarcz HP, McConnaughey TA, Sandeman IM (2000) Separation of kinetic and metabolic isotope effects in carbon-13 records preserved in reef coral skeletons. Geochim Cosmochim Acta 64:975–987

    CAS  Google Scholar 

  • Heiss GA (1996) Annual band width variation in Porites sp. from Aqaba, Gulf of Aqaba, Red Sea. Bull Mar Sci 59:393–403

    Google Scholar 

  • Heiss GA, Dullo W-C, Joachimski MM, Reijmer JJG, Schuhmacher H (1999) Increased seasonality in the Gulf of Aqaba, Red Sea, recorded in the oxygen isotope record of a Porites lutea coral. Senckenb Marit 30:17–26

    Google Scholar 

  • Klein R, Pätzold J, Wefer G, Loya Y (1992) Seasonal variations in the stable isotopic composition and the skeletal density pattern of the coral Porites lobata (Gulf of Eilat, Red Sea). Mar Biol 112:259–263

    CAS  Google Scholar 

  • Klein R, Pätzold J, Wefer G, Loya Y (1993) Depth-related timing of density band formation in Porites spp. corals from the Red Sea inferred from X-ray chronology and stable isotope composition. Mar Ecol Prog Ser 97:99–104

    Google Scholar 

  • Kuhnert H, Pätzold J, Hatcher B, Wyrwoll K-H, Eisenhauer A, Collins LB, Zhu ZR, Wefer G (1999) A 200-year coral stable isotope record from a high-latitude reef off Western Australia. Coral Reefs 18:1–12

    Google Scholar 

  • Land LS, Lang JC, Barnes DJ (1975) Extension rate: a primary control on the isotopic composition of West Indian (Jamaican) scleractinian reef coral skeletons. Mar Biol 33:221–233

    CAS  Google Scholar 

  • Linsley BK, Messier RG, Dunbar RB (1999) Assessing between-colony oxygen isotope variability in the coral Porites lobata at Clipperton Atoll. Coral Reefs 18:13–27

    Article  Google Scholar 

  • Linsley BK, Wellington GM, Schrag DP (2000) Decadal sea surface temperature variability in the subtropical South Pacific from 1726–1997 a.d. Science 290:1145–1148

    Article  CAS  PubMed  Google Scholar 

  • Lough JM, Barnes DJ (2000) Environmental controls on growth of the massive coral Porites. J Exp Mar Biol Ecol 245:225–243

    PubMed  Google Scholar 

  • McConnaughey T (1989a) 13C and 18O isotopic disequilibrium in biological carbonates: I. Patterns. Geochim Cosmochim Acta 53:151–162

    CAS  Google Scholar 

  • McConnaughey T (1989b) 13C and 18O isotopic disequilibrium in biological carbonates: II. In vitro simulation of kinetic isotope effects. Geochim Cosmochim Acta 53:163–171

    CAS  Google Scholar 

  • McConnaughey TA, Burdett J, Whelan JF, Paull CK (1997) Carbon isotopes in biological carbonates: respiration and photosynthesis. Geochim Cosmochim Acta 61:611–622

    CAS  Google Scholar 

  • Moustafa YA, Pätzold J, Loya Y, Wefer G (2000) Mid-Holocene stable isotope record of corals from the northern Red Sea. Int J Earth Sci 88:742–751

    Article  CAS  Google Scholar 

  • Paldor N, Anati DA (1979) Seasonal variations of temperature and salinity in the Gulf of Elat (Aqaba). Deep-Sea Res 26:661–672

    Google Scholar 

  • Pätzold J (1986) Temperatur- und CO2-Änderungen im tropischen Oberflächenwasser der Philippinen während der letzten 120 Jahre: Speicherung in stabilen Isotopen hermatyper Korallen Geologisch-Paläontologisches Institut, vol 12. Universität Kiel, Kiel, Germany, 92 pp

  • Rayner NA, Horton EB, Parker DE, Folland CK, Hackett RB (1996) Version 2.2 of the global sea-ice and sea surface temperature data set, 1903–1994. Hadley Centre, UK. Meteorological Office, Bracknell, England

  • Reiss Z, Hottinger L (1984) The Gulf of Aqaba: ecological micropaleontology. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Tudhope AW, Chilcott CP, McCulloch MT, Cook ER, Chappell J, Ellam RM, Lea DW, Lough JM, Shimmield GB (2001) Variability in the El Niño-Southern Oscillation through a glacial–interglacial cycle. Science 291:1511–1517

    Article  CAS  PubMed  Google Scholar 

  • Urban FE, Cole JE, Overpeck JT (2000) Influence of mean climate change on climate variability from a 155-year tropical Pacific coral record. Nature 407:989–993

    Article  CAS  PubMed  Google Scholar 

  • Weber JN, Woodhead PMJ (1972) Temperature dependence of oxygen-18 concentration in reef coral carbonates. J Geophys Res 77:463–473

    CAS  Google Scholar 

  • Wolf-Vecht A, Paldor N, Brenner S (1992) Hydrographic indications of advection/convection effects in the Gulf of Elat. Deep-Sea Res 39:1393–1401

    Google Scholar 

Download references

Acknowledgements

We thank M. Segl and her team for stable isotope analysis, M. Fine for coral collection within the framework of the Red Sea Program on Marine Sciences (RSP), S.A. Al-Rousan, M. Rosenfeld, G.A. Heiss, and A. Genin for providing data, three anonymous reviewers, and H. Kuhnert, A. Grottoli, and W. Hale for comments. This work is part of the project Klima in Historischen Zeiten (KIHZ), funded by the BMBF (German Federal Ministry for Education and Research) through grant 01LG9905.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Felis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Felis, T., Pätzold, J. & Loya, Y. Mean oxygen-isotope signatures in Porites spp. corals: inter-colony variability and correction for extension-rate effects. Coral Reefs 22, 328–336 (2003). https://doi.org/10.1007/s00338-003-0324-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-003-0324-3

Keywords

Navigation