Skip to main content
Log in

Sub-equilibrium oxygen-18 and carbon-13 levels in biological carbonates: carbonate and kinetic models

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Many biological carbonates contain less oxygen-18 and carbon-13 than expected for isotopic equilibrium with ambient waters. "Carbonate" explanations for the oxygen-18 deficiencies draw inspiration from McCrea's (1950) observation that dissolved inorganic carbonates (DIC), in isotopic equilibrium with water, lose oxygen-18 in proportion to the abundance of the carbonate ion. Spero et al. (1997) therefore suggested that high carbonate levels might cause foraminifera to produce isotopically lighter shells at elevated pH. Adkins et al. (2003) extended this idea to the (presumably) alkaline internal calcification sites of deep-sea corals, and related skeletal carbon-13 content to the use of molecular carbon dioxide in calcification. This review compares these "carbonate" ideas with an updated "kinetic" model, which attributes isotopic enlightenment (for carbon-13 and oxygen-18) to carbon-dioxide-based calcification, and incomplete isotopic equilibration between DIC and water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  • Adkins JF, Boyle EA, Curry WB, Lutringer A (2003) Stable isotopes in deep-sea corals and a new mechanism for "vital effects." Geochim Cosmochim Acta 67:1129–1143

    Google Scholar 

  • Baertschi P (1952) Die Fraktionierung der Kohlenstoffisotopen bei der Absorption von Kohlendioxyd. Helv Chim Acta 35:1030–1936

    CAS  Google Scholar 

  • Bijma J, Spero HJ, Lea DW (1999) Reassessing foraminiferal stable isotope geochemistry: impact of the oceanic carbonate system (experimental results.) In: Fischer G, Wefer G (eds) Use of proxies in paleoceanography. Examples from the South Atlantic. Springer, Berlin Heidelberg New York, pp 489–512

  • Brenninkmeijer CA, Kraft MP, Mook WG (1983) Oxygen isotope fractionation between CO2 and H2O. Isotope Geosci 1:181–190

    CAS  Google Scholar 

  • Clark ID, Fontes J-C, Fritz P (1992) Stable isotope disequilibria in travertine from high pH waters: laboratory investigations and field observations from Oman. Geochim Cosmochim Acta 56:2041–2050

    Article  CAS  Google Scholar 

  • Craig H (1953) The geochemistry of stable carbon isotopes. Geochim Cosmochim Acta 3:53–92

    CAS  Google Scholar 

  • Craig H (1954) Carbon 13 in plants and the relationships between carbon 13 and carbon 14 variations in nature. J Geol 62:115–149

    CAS  Google Scholar 

  • Dietzel M, Usdowski E, Hoefs J (1991) Chemical and 13C/12C- and 18O/16O-isotope evolution of alkaline drainage waters and the precipitation of calcite. Appl Geochem 7:177–184

    Article  Google Scholar 

  • Epstein S, Buchsbaum R, Lowenstam H, Urey HC (1951) Carbonate-water isotopic temperature scale. Bull Geol Soc Am 62:417–425

    CAS  Google Scholar 

  • Epstein S, Buchsbaum R, Lowenstam H, Urey HC (1953) Revised carbonate-water isotopic temperature scale. Bull Geol Soc Am 64:1315–1325

    CAS  Google Scholar 

  • Erez J, Bentov S, Brownlee C, Raz M, Rinkevich B (2002) Biomineralization mechanisms in foraminifera and corals and their paleoceanographic implications. In: Proc Goldschmidt Conf, Davos, Switzerland, Abstr A216

  • Furla P, Bénazet-Tambutté S, Jaubert J, Allemand D (1998) Diffusional permeability of dissolved inorganic carbon through the isolated oral epithelial layers of the sea anemone, Anemonia viridis. J Exp Mar Biol Ecol 221:71–88

    Article  CAS  Google Scholar 

  • Furla P, Galgani I, Durand I, Allemand D (2000) Sources and mechanisms of inorganic carbon transport for coral calcification and photosynthesis. J Exp Biol 203:3445–3457

    CAS  PubMed  Google Scholar 

  • Green M, Taube H (1963) Isotopic fractionation in the OH-H2O exchange reaction. J Phys Chem 67:1565–1566

    CAS  Google Scholar 

  • Griffin S, Griffin E, Druffel RM (1989) Sources of carbon to deep-sea corals. Radiocarbon 31:533–543

    Google Scholar 

  • Grossman EL, Ku T-L (1986) Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects. Chem Geol 59:59–74

    CAS  Google Scholar 

  • Grottoli AG (2002) Effect of light and brine shrimp on skeletal δ13C in the Hawaiian coral Porites compressa: a tank experiment. Geochim Cosmochim Acta 66:1955–1967

    Article  CAS  Google Scholar 

  • Grottoli AG, Wellington GM (1999) Effect of light and zooplankton on skeletal δ13C values in the eastern Pacific corals Pavona clavus and Pavona gigantea. Coral Reefs 18:29–41

    Article  Google Scholar 

  • Gutknecht J, Bisson MJ, Tosteson FC (1977) Diffusion of carbon dioxide through lipid bilayer membranes: effects of carbonic anhydrase, bicarbonate, and unstirred layers. J Gen Physiol 55:1–17

    Google Scholar 

  • Johnson KS (1982) Carbon dioxide hydration and dehydration kinetics in seawater. Limnol Oceanogr 27:849–855

    CAS  Google Scholar 

  • Kim S-T, O'Neil JR (1997) Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochim Cosmochim Acta 61:3461–3476

    CAS  Google Scholar 

  • Lee D, Carpenter SJ (2001) Isotopic disequilibrium in marine calcareous algae. Chem Geol 172:307–329

    Article  CAS  Google Scholar 

  • Létolle R, Gégout P, Moranville-Regourd M, Gaveau B (1990) Carbon-13 and oxygen-18 mass spectrometry as a potential tool for the study of carbonate phases in concretes. J Am Ceram Soc 73:3617–3625

    Google Scholar 

  • Macleod G, Fallick AE, Hall AJ (1991) The mechanism of carbonate growth on concrete structures, as elucidated by carbon and oxygen isotopes. Isotope Geosci 86:335–343

    CAS  Google Scholar 

  • Marlier JF, O'Leary MH (1984) Carbon kinetic isotope effects on the hydration of carbon dioxide and the dehydration of bicarbonate ion. J Am Chem Soc 106:1054–5057

    Google Scholar 

  • McConnaughey TA (1989a) 13C and 18O isotope disequilibria in biological carbonates. 1. Patterns. Geochim Cosmochim Acta 53:151–162

    CAS  Google Scholar 

  • McConnaughey TA (1989b) 13C and 18O isotope disequilibria in biological carbonates. 2. In vitro simulation of kinetic isotope effects. Geochim Cosmochim Acta 53:163–171

    CAS  Google Scholar 

  • McConnaughey TA (1989c) Biomineralization mechanisms. In: Crick RE (ed) Origin, evolution, and modern aspects of biomineralization in plants and animals. Plenum Press, New York, pp 57–73

  • McConnaughey TA (1991) Calcification in Chara corallina: CO2 hydroxylation generates protons for bicarbonate assimilation. Limnol Oceanogr 36:619–628

    CAS  Google Scholar 

  • McConnaughey TA, Falk RH (1991) Calcium-proton exchange during algal calcification. Biol Bull 180:185–195

    Google Scholar 

  • McConnaughey TA, Whelan JF (1997) Calcification generates protons for nutrient and bicarbonate uptake. Earth-Sci Rev 42:95–117

    Google Scholar 

  • McConnaughey TA, Burdett JU, Whelan JF, Paull CK (1997) Carbon isotopes in biological carbonates: respiration and photosynthesis. Geochim Cosmochim Acta 61:611–622

    CAS  Google Scholar 

  • McConnaughey TA, Adey WH, Small AM (2000) Community and environmental influences on reef coral calcification. Limnol Oceanogr 45:1667–1671

    CAS  Google Scholar 

  • McCrea JM (1950) On the isotopic chemistry of carbonates and a paleotemperature scale. J Chem Phys 18:849–857

    CAS  Google Scholar 

  • Mills GA, Urey HC (1940) The kinetics of isotope exchange between carbon dioxide, bicarbonate ion, carbonate ion, and water. J Am Chem Soc 62:1019–1026

    CAS  Google Scholar 

  • Reynaud S, Ferrier-Pages C, Sambrotto R, Juillet-Leclerc A, Jaubert J, Gattuso J-P (2002) Effect of feeding on the carbon and oxygen isotopic composition in the tissues and skeleton of the zooxanthellate coral Stylophora pistillata. Mar Ecol Prog Ser 238:81–89

    Google Scholar 

  • Siegenthaler U, Münnich KO (1981) 13C/12C fractionation during CO2 transfer from air to sea. In: Bolin B (ed) Carbon cycle modelling. Wiley, New York, pp 249–257

  • Smith JE, Risk MJ, Schwarcz HP, McConnaughey TA, Keller NB (2000) Deep-sea corals as paleotemperature indicators: overcoming "vital effects". Palaios 15:25–32

    Google Scholar 

  • Smith JE, Schwarcz HP, Risk MJ (2002) Patterns of isotopic disequilibria in azooxanthellate coral skeletons. Hydrobiologia 471:111–115

    Article  Google Scholar 

  • Spero HJ, Lea DW (1986) Experimental determination of stable isotope variability in Globigerina bulloides: implications for paleoceanographic reconstructions. Mar Micropaleontol 28:231–246

    Article  Google Scholar 

  • Spero HJ, Bijma J, Lea DW, Bemis BE (1997) Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes. Nature 390:497—500

    Article  CAS  Google Scholar 

  • Sültemeyer D, Rinast K-A (1996) The CO2 permeability of the plasma membrane of Chlamydomonas reinhardtii: mass-spectrometric 18O-exchange measurements from 13C18O2 in suspensions of carbonic anhydrase-loaded plasma-membrane vesicles. Planta 200:358–368

    Google Scholar 

  • Thornton R (1962) Solvent isotope effects in H2O16 and H2O18. J Am Chem Soc 84:2474–2475

    CAS  Google Scholar 

  • Urey HC (1947) The thermodynamic properties of isotopic substances. J Chem Soc 562—581

  • Usdowski E, Hoefs J (1993) Oxygen isotope exchange between carbonic acid, bicarbonate, carbonate, and water: a re-examination of the data of McCrea (1950) and an expression for the overall partitioning of oxygen isotopes between the carbonate species and water. Geochim Cosmochim Acta 57:3815–3818

    Article  CAS  Google Scholar 

  • Usdowski E, Michaelis J, Böttcher ME, Hoefs J (1991) Factors for the oxygen isotope equilibrium fractionation between aqueous and gaseous CO2, carbonic acid, bicarbonate, carbonate, and water (19 °C). Z Phys Chem 170:S237–S249

    Google Scholar 

  • Watson EB (1996) Surface enrichment and trace-element uptake during crystal growth. Geochim Cosmochim Acta 60:5013—5020

    CAS  Google Scholar 

  • White RMP, Dennis PF, Atkinson TC (1999) Experimental calibration and field investigation of the oxygen isotopic fractionation between biogenic aragonite and water. Rapid Commun Mass Spectrom 13:1242–1247

    Article  CAS  PubMed  Google Scholar 

  • Zeebe R (1999) An explanation of the effect of seawater carbonate concentration on foraminiferal oxygen isotopes. Geochim Cosmochim Acta 63:2001–2007

    Article  CAS  Google Scholar 

  • Zhang Z, Quay PD, Wilbur DO (1995) Carbon isotope fractionation during gas–water exchange and dissolution of CO2. Geochim Cosmochim Acta 59:107–114

    Article  CAS  Google Scholar 

  • Zhou G-T, Zheng Y-F (2002) Kinetic mechanism of oxygen isotope disequilibrium in precipitated witherite and aragonite at low temperatures: an experimental study. Geochim Cosmochim Acta 66:63–71

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Geochemical Society supported my attendance at the Goldschmidt conference where this paper was originally presented. Anne Cohen invited me to that conference, and Peter Swart encouraged me to write down my thoughts for this issue of Coral Reefs. Managing editor Andrea Grottoli balanced the conflicting perspectives of the author, editors, reviewers, and other scientists whose works were contradicted or ignored. Jess Adkins contributed insightful criticisms. Richard Zeebe generously offered detailed discussions of equilibrium 18O fractionations within the DIC system. Several colleagues and anonymous reviewers provided valued suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. McConnaughey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McConnaughey, T.A. Sub-equilibrium oxygen-18 and carbon-13 levels in biological carbonates: carbonate and kinetic models. Coral Reefs 22, 316–327 (2003). https://doi.org/10.1007/s00338-003-0325-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-003-0325-2

Keywords

Navigation