Skip to main content

Advertisement

Log in

Restoration of coral populations in light of genetic diversity estimates

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Due to the importance of preserving the genetic integrity of populations, strategies to restore damaged coral reefs should attempt to retain the allelic diversity of the disturbed population; however, genetic diversity estimates are not available for most coral populations. To provide a generalized estimate of genetic diversity (in terms of allelic richness) of scleractinian coral populations, the literature was surveyed for studies describing the genetic structure of coral populations using microsatellites. The mean number of alleles per locus across 72 surveyed scleractinian coral populations was 8.27 (±0.75 SE). In addition, population genetic datasets from four species (Acropora palmata, Montastraea cavernosa, Montastraea faveolata and Pocillopora damicornis) were analyzed to assess the minimum number of donor colonies required to retain specific proportions of the genetic diversity of the population. Rarefaction analysis of the population genetic datasets indicated that using 10 donor colonies randomly sampled from the original population would retain >50% of the allelic diversity, while 35 colonies would retain >90% of the original diversity. In general, scleractinian coral populations are genetically diverse and restoration methods utilizing few clonal genotypes to re-populate a reef will diminish the genetic integrity of the population. Coral restoration strategies using 10–35 randomly selected local donor colonies will retain at least 50–90% of the genetic diversity of the original population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Altizer S, Harvell D, Friedle E (2003) Rapid evolutionary dynamics and disease threats to biodiversity. Trends Ecol Evol 18:589–596

    Article  Google Scholar 

  • Amar KO, Rinkevich B (2007) A floating mid-water coral nursery as larval dispersion hub: Testing an idea. Mar Biol 151:713–718

    Article  Google Scholar 

  • Anonymous (2006) Endangered and threatened species: Final listing determinations for elkhorn coral and staghorn coral. Fed Regist 71:26852–26872

    Google Scholar 

  • Aronson RB, Precht WF (1997) Stasis, biological disturbance, and community structure of a Holocene coral reef. Paleobiology 23:326–346

    Google Scholar 

  • Aronson RB, Precht WF (2001) White-band disease and the changing face of Caribbean coral reefs. Hydrobiologia 460:25–38

    Article  Google Scholar 

  • Ayre DJ, Hughes TP (2004) Climate change, genotypic diversity and gene flow in reef-building corals. Ecol Lett 7:273–278

    Article  Google Scholar 

  • Ayre DJ, Resing JM (1986) Sexual and asexual production of planulae in reef corals. Mar Biol 90:187–190

    Article  Google Scholar 

  • Bataillon TM, David JL, Schoen DJ (1996) Neutral genetic markers and conservation genetics: Simulated germplasm collections. Genetics 144:409–417

    PubMed  CAS  Google Scholar 

  • Baums IB (2008) A restoration genetics guide for coral reef conservation. Mol Ecol 17:2796–2811

    Article  PubMed  Google Scholar 

  • Baums IB, Miller MW, Hellberg ME (2005) Regionally isolated populations of an imperiled Caribbean coral, Acropora palmata. Mol Ecol 14:1377–1390

    Article  PubMed  CAS  Google Scholar 

  • Baums IB, Miller MW, Hellberg ME (2006) Geographic variation in clonal structure in a reef-building Caribbean coral, Acropora palmata. Ecol Monogr 76:503–519

    Article  Google Scholar 

  • Benzie JAH, Haskell A, Lehman H (1995) Variation in the genetic composition of coral (Pocillopora damicornis and Acropora palifera) populations from different reef habitats. Mar Biol 121:731–739

    Article  Google Scholar 

  • Brazeau DA, Gleason DF, Morgan ME (1998) Self-fertilization in brooding hermaphroditic Caribbean corals: Evidence from molecular markers. J Exp Mar Biol Ecol 231:225–238

    Article  Google Scholar 

  • Carlon DB (1999) The evolution of mating systems in tropical reef corals. Trends Ecol Evol 14:491–495

    Article  PubMed  Google Scholar 

  • Carlon DB, Lippe C (2008) Fifteen new microsatellite markers for the reef coral Favia fragum and a new Symbiodinium microsatellite. Molecular Ecology Resources. doi:10.1111/j.1471-8286.2008.02095.x

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    PubMed  CAS  Google Scholar 

  • DiBattista JD (2008) Patterns of genetic variation in anthropogenically impacted populations. Conserv Genet 9:141–156

    Article  Google Scholar 

  • Edmands S, Timmerman CC (2003) Modeling factors affecting the severity of outbreeding depression. Conserv Biol 17:883–892

    Article  Google Scholar 

  • Edmunds PJ (1994) Evidence that reef-wide patterns of coral bleaching may be the result of the distribution of bleaching susceptible clones. Mar Biol 121:137–142

    Article  Google Scholar 

  • Eldridge MDB, King JM, Loupis AK, Spencer PBS, Taylor AC, Pope LC, Hall GP (1999) Unprecedented low levels of genetic variation and inbreeding depression in an island population of the black-footed rock-wallaby. Conserv Biol 13:531–541

    Article  Google Scholar 

  • Fant JB, Holmstrom RM, Sirkin E, J.R. E, Masi S (2008) Genetic structure of threatened native populations and propagules used for restoration in a clonal species, American Beachgrass (Ammophila breviligulata Fern.). Restor Ecol. doi:10.1111/j.1526-100X.2007.00348.x

  • Foster NL, Baums IB, Mumby PJ (2007) Sexual vs. asexual reproduction in an ecosystem engineer: the massive coral Montastraea annularis. J Anim Ecol 76:384–391

    Article  PubMed  Google Scholar 

  • Fukami H, Budd AF, Levitan DR, Jara J, Kersanach R, Knowlton N (2004) Geographic differences in species boundaries among members of the Montastraea annularis complex based on molecular and morphological markers. Evolution 58:324–337

    PubMed  CAS  Google Scholar 

  • Goffredo S, Mezzomonaco L, Zaccanti F (2004) Genetic differentiation among populations of the Mediterranean hermaphroditic brooding coral Balanophyllia europaea (Scleractinia: Dendrophylliidae). Mar Biol 145:1075–1083

    Article  Google Scholar 

  • Grober-Dunsmore R, Bonito V, Frazer TK (2007) Discernment of sexual recruits is not critical for assessing population recovery of Acropora palmata. Mar Ecol Prog Ser 335:233–236

    Article  Google Scholar 

  • Haig SM (1998) Molecular contributions to conservation. Ecology 79:413–425

    Article  Google Scholar 

  • Heyward KJ, Babcock RC (1986) Self- and cross-fertilization in scleractinian corals. Mar Biol 90:191–195

    Article  Google Scholar 

  • Hufford KM, Mazer SJ (2003) Plant ecotypes: genetic differentiation in the age of ecological restoration. Trends Ecol Evol 18:147–155

    Article  Google Scholar 

  • Hurlbert SH (1971) Nonconcept of species diversity: Critique and alternative parameters. Ecology 52:577–586

    Article  Google Scholar 

  • Jackson JBC, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury RH, Cooke R, Erlandson J, Estes JA, Hughes TP, Kidwell S, Lange CB, Lenihan HS, Pandolfi JM, Peterson CH, Steneck RS, Tegner MJ, Warner RR (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–638

    Article  PubMed  CAS  Google Scholar 

  • Jones ME, Jarman PJ, Lees CM, Hesterman H, Hamede RK, Mooney NJ, Mann D, Pukk CE, Bergfeld J, McCallum H (2007) Conservation management of tasmanian devils in the context of an emerging, extinction-threatening disease: Devil facial tumor disease. EcoHealth 4:326–337

    Article  Google Scholar 

  • Kalinowski ST (2004) Counting alleles with rarefaction: Private alleles and hierarchical sampling designs. Conserv Genet 5:539–543

    Article  CAS  Google Scholar 

  • Kalinowski ST (2005) HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189

    Article  CAS  Google Scholar 

  • Keller M, Kollmann J, Edwards PJ (2000) Genetic introgression from distant provenances reduces fitness in local weed populations. J Appl Ecol 37:647–659

    Article  Google Scholar 

  • LeGoff-Vitry MC, Pybus OG, Rogers AD (2004) Genetic structure of the deep-sea coral Lophelia pertusa in the northeast Atlantic revealed by microsatellites and internal transcribed spacer sequences. Mol Ecol 13:537–549

    Article  CAS  Google Scholar 

  • Mackenzie JB, Munday PL, Willis BL, Miller DJ, van Oppen MJH (2004) Unexpected patterns of genetic structuring among locations but not colour morphs in Acropora nasuta (Cnidaria; Scleractinia). Mol Ecol 13:9–20

    Article  PubMed  CAS  Google Scholar 

  • Magalon H, Adjeroud M, Veuille M (2005) Patterns of genetic variation do not correlate with geographical distance in the reef-building coral Pocillopora meandrina in the South Pacific. Mol Ecol 14:1861–1868

    Article  PubMed  CAS  Google Scholar 

  • Maier E, Tollrian R, Rinkevich B, Nurnberger B (2005) Isolation by distance in the scleractinian coral Seriatopora hystrix from the Red Sea. Mar Biol 147:1109–1120

    Article  Google Scholar 

  • McKay JK, Christian CE, Harrison S, Rice KJ (2005) “How local is local?” - A review of practical and conceptual issues in the genetics of restoration. Restor Ecol 13:432–440

    Article  Google Scholar 

  • Miller KJ, Howard CG (2004) Isolation of microsatellites from two species of scleractinian coral. Mol Ecol Notes 4:11–13

    Article  CAS  Google Scholar 

  • Miller KJ, Mundy CN (2005) In situ fertilisation success in the scleractinian coral Goniastrea favulus. Coral Reefs 24:313–317

    Article  Google Scholar 

  • Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution 29:1–10

    Article  Google Scholar 

  • Perez-Ruzafa A, Gonzalez-Wanguemert M, Lenfant P, Marcos C, Garcia-Charton JA (2006) Effects of fishing protection on the genetic structure of fish populations. Biol Conserv 129:244–255

    Article  Google Scholar 

  • Petersen D, Tollrian R (2001) Methods to enhance sexual recruitment for restoration of damaged reefs. Bull Mar Sci 69:989–1000

    Google Scholar 

  • Petit RJ, El Mousadik A, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conserv Biol 12:844–855

    Article  Google Scholar 

  • Precht WF (2006) Coral reef restoration handbook. CRC Press, Boca Raton, FL

    Google Scholar 

  • Precht WF, Aronson RB, Miller SL, Keller BD, Causey B (2005) The folly of coral restoration programs following natural disturbances in the Florida Keys National Marine Sanctuary. Ecol Restor 23:24–28

    Article  Google Scholar 

  • Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237

    Article  Google Scholar 

  • Rinkevich B (1995) Restoration strategies for coral reefs damaged by recreational activities: The use of sexual and asexual recruits. Restor Ecol 3:241–251

    Article  Google Scholar 

  • Rinkevich B (2000) Steps towards the evaluation of coral reef restoration by using small branch fragments. Mar Biol 136:807–812

    Article  Google Scholar 

  • Rinkevich B (2005) Conservation of coral reefs through active restoration measures: Recent approaches and last decade progress. Environ Sci Technol 39:4333–4342

    Article  PubMed  CAS  Google Scholar 

  • Shearer TL (2004) Reef connectivity: genetic analysis of recruitment and gene flow among Caribbean scleractinian corals. University at Buffalo, p 202

  • Shearer TL, Coffroth MA (2004) Isolation of microsatellite loci from the scleractinian corals, Montastraea cavemosa and Porites astreoides. Mol Ecol Notes 4:435–437

    Article  CAS  Google Scholar 

  • Sherman CDH (2007) Mating system variation in the hermaphroditic brooding coral, Seriatopora hystrix. Heredity 100:296–303

    Article  PubMed  Google Scholar 

  • Souter P, Grahn M (2008) Spatial genetic patterns in lagoonal, reef-slope and island populations of the coral Platygyra daedalea in Kenya and Tanzania. Coral Reefs 27:433–439

    Article  Google Scholar 

  • Spielman D, Brook BW, Briscoe DA, Frankham R (2004) Does inbreeding and loss of genetic diversity decrease disease resistance? Conserv Genet 5:439–448

    Article  Google Scholar 

  • Starger CJ, Yeoh SSR, Dai CF, Bakero AC, Desalle R (2007) Ten polymorphic STR loci in the cosmopolitan reef coral, Pocillopora damicornis. Mol Ecol Resour 8:619–621

    Article  CAS  Google Scholar 

  • Stoddart JA (1983) Asexual production of planulae in the coral Pocillopora damicornis. Mar Biol 76:279–284

    Article  Google Scholar 

  • Stoddart JA (1984) Genetical structure within populations of the coral Pocillopora damicornis. Mar Biol 81:19–30

    Article  CAS  Google Scholar 

  • Stoddart JA, Babcock RC, Heyward AJ (1988) Self-fertilization and maternal enzymes in the planulae of the coral Goniastrea favulus. Mar Biol 99:489–494

    Article  CAS  Google Scholar 

  • Szmant AM, Weil E, Miller MW, Colon DE (1997) Hybridization within the species complex of the scleractinan coral Montastraea annularis. Mar Biol 129:561–572

    Article  Google Scholar 

  • Underwood JN, Souter PB, Ballment ER, Lutz AH, van Oppen MJH (2006) Development of 10 polymorphic microsatellite markers from herbicide-bleached tissues of the brooding pocilloporid coral Seriatopora hystrix. Mol Ecol Notes 6:176–178

    Article  CAS  Google Scholar 

  • van Oppen MJH, Gates RD (2006) Conservation genetics and the resilience of reef-building corals. Mol Ecol 15:3863–3883

    Article  PubMed  CAS  Google Scholar 

  • van Oppen MJH, Underwood JN, Muirhead AN, Peplow L (2007) Ten microsatellite loci for the reef-building coral Acropora millepora (Cnidaria, Scleractinia) from the Great Barrier Reef, Australia. Mol Ecol Notes 7:436–438

    Article  CAS  Google Scholar 

  • Wallace CC, Willis BL (1994) Systematics of the coral genus Acropora: Implications of new biological findings for species concepts. Annu Rev Ecol Syst 25:237–262

    Google Scholar 

  • Willis BL, Babcock RC, Harrison PL, Wallace CC (1997) Experimental hybridization and breeding incompatibilities within the mating systems of mass spawning reef corals. Coral Reefs 16:S53–S65

    Article  Google Scholar 

  • Yeemin T, Sutthacheep M, Pettongma R (2006) Coral reef restoration projects in Thailand. Ocean Coast Manage 49:562–575

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Florida Keys National Marine Sanctuary and the Flower Garden Banks National Marine Sanctuary, and the Governments of Bermuda, the Bahamas, Fiji, Mexico, Panama and Puerto Rico, for permission to collect scleractinian coral samples. Special thanks to S. Arnold, J. Azueta, C. Bastidas, M.A. Coffroth, J. Craig, A. Cróquer, M. del Carmen García, E. García, J. Gibson, C. Gutiérrez-Rodríguez, H. Guzmán, R.M. Loretto, M.I. Millet, D.G. Muñoz, C. Salazar, P. Sale, T. Snell, R. Steneck, A. Szmant, E. Weil and the people of Ba, Macuata, Nadroga, and Rewa provinces in Fiji for various contributions to this work. This research was supported by National Oceanic and Atmospheric Administration’s National Undersea Research Program (2000-15 and 2002-12), the National Science Foundation (OCE-95-30057 and OCE-99-07319), the National Coral Reef Institute, International Cooperative Biodiversity Group grant R21 TW006662-01 from the Fogarty International Center at the National Institutes of Health and the World Bank-Global Environment Fund Coral Reef Targeted Research program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. L. Shearer.

Additional information

Communicated by Biology Editor Dr. Ruth Gates

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 901 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shearer, T.L., Porto, I. & Zubillaga, A.L. Restoration of coral populations in light of genetic diversity estimates. Coral Reefs 28, 727–733 (2009). https://doi.org/10.1007/s00338-009-0520-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-009-0520-x

Keywords

Navigation