Skip to main content
Log in

A Geometrically Nonlinear Cosserat (Micropolar) Curvy Shell Model Via Gamma Convergence

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

Using \(\Gamma \)-convergence arguments, we construct a nonlinear membrane-like Cosserat shell model on a curvy reference configuration starting from a geometrically nonlinear, physically linear three-dimensional isotropic Cosserat model. Even if the theory is of order O(h) in the shell thickness h, by comparison to the membrane shell models proposed in classical nonlinear elasticity, beside the change of metric, the membrane-like Cosserat shell model is still capable of capturing the transverse shear deformation and the Cosserat-curvature due to remaining Cosserat effects. We formulate the limit problem by scaling both unknowns, the deformation and the microrotation tensor, and by expressing the parental three-dimensional Cosserat energy with respect to a fictitious flat configuration. The model obtained via \(\Gamma \)-convergence is similar to the membrane (no \(O(h^3)\) flexural terms, but still depending on the Cosserat-curvature) Cosserat shell model derived via a derivation approach, but these two models do not coincide. Comparisons to other shell models are also included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable to this article.

Notes

  1. Observe that the surviving Cosserat curvature is not related to the change of curvature tensor, which measures the change of mean curvature and Gauß curvature of the surface, see Acharya (2000), Anicic and Léger (1999) as well as the recent work by Šilhavỳ (2021) and Ghiba et al. (2021, 2023a, 2023b), Ghiba and Neff (2022)).

  2. Since \(\infty >\int _{\omega }|\varphi |^2 \,dx\,dy=\int _{\omega }\int _{-1/2}^{1/2}|\varphi |^2 \,dz\, dx\,dy=\int _{\Omega _1}|\varphi |^2\, \textrm{d}V\), which means any element from \(X_\omega \), belongs to X as well.

References

  • Acharya, A.: A nonlinear generalization of the Koiter-Sanders-Budiansky bending strain measure. Int. J. Solids Struct. 37(39), 5517–5528 (2000)

    Google Scholar 

  • Aganović, I., Tambača, J., Tutek, Z.: Derivation and justification of the model of micropolar elastic shells from three-dimensional linearized micropolar elasticity. Asymptot Anal 51(3–4), 335–361 (2007)

    MathSciNet  Google Scholar 

  • Altenbach, H., Eremeyev, V.A.: Shell-like Structures: Non-Classical Theories and Applications., vol. 15 of Advanced Structured Materials. Springer-Verlag (2011)

  • Altenbach, H., Eremeyev, V.: Generalized Continua from the Theory to Engineering Applications. Springer, Wien (2013)

    Google Scholar 

  • Altenbach, J., Altenbach, H., Eremeyev, V.A.: On generalized Cosserat-type theories of plates and shells: a short review and bibliography. Arch. Appl. Mech. 80, 73–92 (2010)

    Google Scholar 

  • Anicic, S.: A shell model allowing folds. In: Numerical Mathematics and Advanced Applications, pp. 317–326. Springer (2003)

  • Anicic, S.: Mesure des variations infinitésimales des courbures principales d’une surface. C. R. Acad. Sci. Paris Ser. Math. 335(3), 301–306 (2002)

    MathSciNet  Google Scholar 

  • Anicic, S.: Polyconvexity and existence theorem for nonlinearly elastic shells. J. Elast. 132(1), 161–173 (2018)

    MathSciNet  Google Scholar 

  • Anicic, S.: Existence theorem for a first-order koiter nonlinear shell model. Discrete Contin Dyn Syst S 12(6), 1535 (2019)

    MathSciNet  Google Scholar 

  • Anicic, S., Léger, A.: Formulation bidimensionnelle exacte du modele de coque 3d de kirchhoff-love. C. R. Acad Sci Ser I Math 329(8), 741–746 (1999)

    MathSciNet  Google Scholar 

  • Antman, S.S.: Nonlinear problems of elasticity, volume 107 of applied mathematical sciences. Springer, Berlin (1995)

    Google Scholar 

  • Bartels, S., Griehl, M., Neukamm, S., Padilla-Garza, D., Palus, C.: A Nonlinear Bending Theory for Nematic lce Plates. arXiv preprint arXiv:2203.04010 (2022)

  • Bîrsan, M.: Derivation of a refined 6-parameter shell model: Descent from the three-dimensional Cosserat elasticity using a method of classical shell theory. Math. Mech. Solids 25(6), 1318–1339 (2020)

    MathSciNet  Google Scholar 

  • Bîrsan, M., Ghiba, I.D., Martin, R.J., Neff, P.: Refined dimensoinal reduction for isotropic elastic cosserat shells with initial curvature. Math. Mech. Solids 24(12), 4000–4019 (2019)

    MathSciNet  Google Scholar 

  • Boyer, F., Renda, F.: Poincaré equations for cosserat media: application to shells. J. Nonlinear Sci. 27(1), 1–44 (2017)

    MathSciNet  Google Scholar 

  • Braun, J., Schmidt, B.: Existence and convergence of solutions of the boundary value problem in atomistic and continuum nonlinear elasticity theory. Calc. Var. Partial. Differ. Equ. 55(5), 1–36 (2016)

    MathSciNet  Google Scholar 

  • Chróścielewski, J., Makowski, J., Pietraszkiewicz, W.: Statics and Dynamics of Multifold Shells: Nonlinear Theory and Finite Element Method (in Polish). Wydawnictwo IPPT PAN, Warsaw (2004)

    Google Scholar 

  • Chróścielewski, J., Pietraszkiewicz, W., Witkowski, W.: On shear correction factors in the non-linear theory of elastic shells. Int. J. Solids Struct. 47, 3537–3545 (2010)

    Google Scholar 

  • Ciarlet, P.G.: Mathematical Elasticity, vol. 1, Threedimensional Elasticity. Amsterdam (1987)

  • Ciarlet, P.G.: Introduction to Linear Shell Theory. Series in Applied Mathematics, first edition Gauthier-Villars, Paris, (1998)

    Google Scholar 

  • Cohen, H., DeSilva, C.N.: Nonlinear theory of elastic directed surfaces. J. Math. Phys. 7(6), 960–966 (1966)

    Google Scholar 

  • Cohen, H., DeSilva, C.N.: Nonlinear theory of elastic surfaces. J. Math. Phys. 7(2), 246–253 (1966)

    MathSciNet  Google Scholar 

  • Cohen, H., Wang, C.-C.: A mathematical analysis of the simplest direct models for rods and shells. Arch. Ration. Mech. Anal. 108(1), 35–81 (1989)

    MathSciNet  Google Scholar 

  • Conti, S., Maggi, F.: Confining thin elastic sheets and folding paper. Arch. Ration. Mech. Anal. 187, 1–48 (2008)

    MathSciNet  Google Scholar 

  • Cosserat, E., Cosserat, F.: Note sur la théorie de l’action euclidienne. Appendix in [12] (1991)

  • Cosserat, E., Cosserat, F.: Théorie des corps déformables (1909)

  • Cosserat, E., Cosserat, F.: Sur la théorie des corps minces. C. R. 146, 169–172 (1908)

    Google Scholar 

  • Eremeyev, V.A., Pietraszkiewicz, W.: The nonlinear theory of elastic shells with phase transitions. J. Elast. 74, 67–86 (2004)

    MathSciNet  Google Scholar 

  • Eremeyev, V.A., Pietraszkiewicz, W.: Local symmetry group in the general theory of elastic shells. J. Elast. 85, 125–152 (2006)

    MathSciNet  Google Scholar 

  • Ericksen, J.L., Truesdell, C.: Exact theory of stress and strain in rods and shells. Arch. Ration. Mech. Anal. 1(1), 295–323 (1957)

    MathSciNet  Google Scholar 

  • Friesecke, G., James, R.D., Müller, S.: The föppl-von kármán plate theory as a low energy \(\Gamma \)-limit of nonlinear elasticity. C. R. Math. 335(2), 201–206 (2002)

    MathSciNet  Google Scholar 

  • Friesecke, G., James, R.D., Müller, S.: A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Commun. Pure Appl. Math. J. Issued Courant Inst. Math. Sci. 55(11), 1461–1506 (2002)

    MathSciNet  Google Scholar 

  • Friesecke, G., James, R.D., Mora, M.G., Müller, S.: Derivation of nonlinear bending theory for shells from three-dimensional nonlinear elasticity by Gamma-convergence. C. R. Math. 336(8), 697–702 (2003)

    MathSciNet  Google Scholar 

  • Friesecke, G., James, R.D., Müller, S.: A hierarchy of plate models derived from nonlinear elasticity by Gamma-convergence. Arch. Ration. Mech. Anal. 180(2), 183–236 (2006)

    MathSciNet  Google Scholar 

  • Gastel, A., Neff, P.: Regularity for a geometrically nonlinear flat cosserat micropolar membrane shell with curvature. in preparation, (2022)

  • Ghiba, I.D., Neff, P.: On the Deformation Measures in Shell Models. in preparation (2022)

  • Ghiba, I.D., Sander, O., Nebel, L.J., Neff, P.: The classical geometrically nonlinear, physically linear reissner-mindlin and kirchhoff-love membrane-bending model is ill-posed. in preparation (2022)

  • Ghiba, I.D., Bîrsan, M., Bîrsan, M., Lewintan, P., Neff, P.: The isotropic Cosserat shell model including terms up to \({O}(h^5)\). Part I: Derivation in matrix notation. J. Elast. 142, 201–262 (2020)

    Google Scholar 

  • Ghiba, I.D., Bîrsan, M., Lewintan, P., Neff, P.: The isotropic elastic Cosserat shell model including terms up to order \(O(h^5)\) in the shell thickness. Part II: Existence of minimizers. J. Elast. 142, 263–290 (2020)

    Google Scholar 

  • Ghiba, I.D., Bîrsan, M., Lewintan, P., Neff, P.: A constrained cosserat-shell model including terms up to \(o(h^5)\). J. Elast. 146(1), 83–141 (2021)

    Google Scholar 

  • Ghiba, I.D., Bîrsan, M., Neff, P.: Linear constrained Cosserat-shell models including terms up to \({O}(h^5)\). Z. Angew. Math. Phys. ZAMP (2023). https://doi.org/10.1007/s00033-023-01937-7

    Article  Google Scholar 

  • Ghiba, I.D., Bîrsan, M., Neff, P.: A linear Cosserat-shell model including terms up to \({O}(h^5)\). J. Elast. (2023). https://doi.org/10.1007/s10659-022-09981-6

    Article  Google Scholar 

  • Green, A.E., Naghdi, P.M.: Shells in the light of generalized Cosserat continua. In: Niordson, F.I. (ed.) Theory of Thin Shells., IUTAM Symposium Copenhagen 1967, pp. 39–58. Springer, Heidelberg (1969)

    Google Scholar 

  • Green, A.E., Naghdi, P.M., Wainwright, W.L.: A general theory of a cosserat surface. Arch. Ration. Mech. Anal. 20(4), 287–308 (1965)

    MathSciNet  Google Scholar 

  • Hornung, P., Neukamm, S., Velčić, I.: Derivation of a homogenized nonlinear plate theory from 3d elasticity. Calc. Var. Partial. Differ. Equ. 51(3), 677–699 (2014)

    MathSciNet  Google Scholar 

  • Koiter, W.T.: Foundations and basic equations of shell theory. A survey of recent progress. In: Niordson, F.I. (ed.) Theory of Thin Shells., IUTAM Symposium Copenhagen 1967, pp. 93–105. Springer, Heidelberg (1969)

    Google Scholar 

  • Le Dret, H., Raoult, A.: The nonlinear membrane model as a variational limit of nonlinear three-dimensional elasticity. J. Math. Pures Appl. 74, 549–578 (1995)

    MathSciNet  Google Scholar 

  • Le Dret, H., Raoult, A.: The membrane shell model in nonlinear elasticity: a variational asymptotic derivation. J. Nonlinear Sci. 6(1), 59–84 (1996)

    MathSciNet  Google Scholar 

  • Lewicka, M.: A note on convergence of low energy critical points of nonlinear elasticity functionals, for thin shells of arbitrary geometry. ESAIM Control Optim. Calc. Var. 17(2), 493–505 (2011)

    MathSciNet  Google Scholar 

  • Lewicka, M., Mora, M.G., Pakzad, M.R.: A nonlinear theory for shells with slowly varying thickness. C. R. Math. 347(3–4), 211–216 (2009)

    MathSciNet  Google Scholar 

  • Lewicka, M., Mora, M.G., Pakzad, M.R.: Shell theories arising as low energy \(\Gamma \)-limit of 3d nonlinear elasticity. Ann. Della Scuola Norm. Super. Pisa-Classe Sci. 9(2), 253–295 (2010)

    MathSciNet  Google Scholar 

  • Lewicka, M., Mora, M.G., Pakzad, M.R.: The matching property of infinitesimal isometries on elliptic surfaces and elasticity of thin shells. Arch. Ration. Mech. Anal. 200, 1023–1050 (2011)

    MathSciNet  Google Scholar 

  • Neff, P.: Geometrically exact cosserat theory for bulk behaviour and thin structures: modelling and mathematical analysis. In: Habilitation Thesis, TU-Darmstadt (2004)

  • Neff, P.: A geometrically exact Cosserat-shell model including size effects, avoiding degeneracy in the thin shell limit. Part I: Formal dimensional reduction for elastic plates and existence of minimizers for positive Cosserat couple modulus. Cont. Mech. Thermodyn. 16(6), 577–628 (2004). https://doi.org/10.1007/s00161-004-0182-4

    Article  Google Scholar 

  • Neff, P.: A geometrically exact cosserat shell-model including size effects, avoiding degeneracy in the thin shell limit. part i: Formal dimensional reduction for elastic plates and existence of minimizers for positive cosserat couple modulus. Contin. Mech. Thermodyn. 16(6), 577–628 (2004)

    MathSciNet  Google Scholar 

  • Neff, P.: The \(\Gamma \)-limit of a finite-strain cosserat model for asymptotically thin domains and a consequence for the cosserat couple modulus \(\mu _c\). PAMM Proc. Appl. Math. Mechan. 5, 629–630 (2005)

    Google Scholar 

  • Neff, P.: A geometrically exact viscoplastic membrane-shell with viscoelastic transverse shear resistance avoiding degeneracy in the thin-shell limit. Z. Angew. Math. Phys. 56(1), 148–182 (2005)

    MathSciNet  Google Scholar 

  • Neff, P.: A geometrically exact planar cosserat shell-model with microstructure: Existence of minimizers for zero cosserat couple modulus. Math. Models Methods Appl. Sci. 17(03), 363–392 (2007)

    MathSciNet  Google Scholar 

  • Neff, P., Chelminski, K.: A geometrically exact cosserat shell-model for defective elastic crystals. justification via \(\gamma \)-convergence. Interfaces Free Bound. 9(4), 455–492 (2007)

    MathSciNet  Google Scholar 

  • Neff, P., Münch, I.: Curl bounds Grad on \({{\rm SO}}(3)\). ESAIM Control Optim. Calc. Var. 14, 148–159 (2008)

    MathSciNet  Google Scholar 

  • Neff, P., Münch, I.: Curl bounds grad on so (3). ESAIM Control Optim. Calc. Var. 14(1), 148–159 (2008)

    MathSciNet  Google Scholar 

  • Neff, P., Hong, K.-I., Jeong, J.: The reissner-mindlin plate is the \(\Gamma \)-limit of cosserat elasticity. Math. Models Methods Appl. Sci. 20(09), 1553–1590 (2010)

    MathSciNet  Google Scholar 

  • Neff, P., Pauly, D., Witsch, K.J.: Poincaré meets korn via maxwell: extending korn’s first inequality to incompatible tensor fields. J. Differ. Equ. 258(4), 1267–1302 (2015)

    Google Scholar 

  • Rubin, M.B.: Cosserat Theories: Shells, Rods and Points, vol. 79. Springer Science & Business Media (2013)

  • Schmidt, B.: Linear \(\Gamma \)-limits of multiwell energies in nonlinear elasticity theory. Contin. Mech. Thermodyn. 20(6), 375–396 (2008)

    MathSciNet  Google Scholar 

  • Šilhavỳ, M.: A new approach to curvature measures in linear shell theories. Math. Mech. Solids 26(9), 1241–1263 (2021)

    MathSciNet  Google Scholar 

  • Zhilin, P.A.: Applied Mechanics - Foundations of Shell Theory. State Polytechnical University Publisher, Sankt Petersburg (2006). (in Russian)

    Google Scholar 

Download references

Acknowledgements

This research has been funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project no. 415894848: NE 902/8-1 (P. Nef, M. Mohammadi Saem and Ionel-Dumitrel Ghiba).

Author information

Authors and Affiliations

Authors

Contributions

All authors had an equal contribution in determining the results and in writing the article.

Corresponding author

Correspondence to Ionel-Dumitrel Ghiba.

Ethics declarations

Conflict of interest

We have no conflicts of interest to disclose.

Additional information

Communicated by Timothy Healey.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 An Auxiliary Optimization Problem

In this section, we solve the auxiliary optimization problem (6.5). We calculate the variation of the energy (6.5) at equilibrium to be minimized over \(c\in \mathbb {R}^3\) in order to determine the minimizer \(d^*\). For arbitrary increment \(\delta d^*\in \mathbb {R}^3\), we have

$$\begin{aligned}&\forall \;\; \delta d^*\in \mathbb {R}^3: \quad \bigl \langle {\textrm{D}}{W}_{\textrm{mp}}(\overline{Q}_{e}^{\natural ,T}(\nabla _{(\eta _1,\eta _2)} \varphi ^\natural |d^*)[(\nabla _x\Theta )^\natural ]^{-1}),\nonumber \\&\qquad \overline{Q}_{e}^{\natural ,T}(0|0|\delta d^*)[(\nabla _x\Theta )^\natural ]^{-1}\bigr \rangle =0. \end{aligned}$$
(A.1)

By applying \({\textrm{D}}{W}_{\textrm{mp}}\), we obtain

$$\begin{aligned}&\bigl \langle 2\,\mu \,\Big ({\textrm{sym}}(\overline{Q}_{e}^{\natural ,T}(\nabla _{(\eta _1,\eta _2)} \varphi ^\natural |d^*)[(\nabla _x\Theta )^\natural ]^{-1}-{{\mathbb {1}}}_3)\Big ),\overline{Q}_{e}^{\natural ,T}(0|0|\delta d^*)[(\nabla _x\Theta )^\natural ]^{-1}\bigr \rangle _{\mathbb {R}^{3\times 3}}\nonumber \\&\quad +\bigl \langle 2\,\mu _c\,\Big (\mathop {{\textrm{skew}}}\nolimits (\overline{Q}_{e}^{\natural ,T}(\nabla _{(\eta _1,\eta _2)} \varphi ^\natural |d^*)[(\nabla _x\Theta )^\natural ]^{-1})\Big ),\overline{Q}_{e}^{\natural ,T}(0|0|\delta d^*)[(\nabla _x\Theta )^\natural ]^{-1}\bigr \rangle _{\mathbb {R}^{3\times 3}}\nonumber \\&\quad +\lambda {\textrm{tr}}\Big ({\textrm{sym}}(\overline{Q}_{e}^{\natural ,T}(\nabla _{(\eta _1,\eta _2)} \varphi ^\natural |d^*)[(\nabla _x\Theta )^\natural ]^{-1}-{{\mathbb {1}}}_3)\Big ) \langle {{\mathbb {1}}}_3, \overline{Q}_{e}^{\natural ,T}(0|0|\delta d^*)[(\nabla _x\Theta )^\natural ]^{-1} \rangle _{\mathbb {R}^{3\times 3}}=0. \end{aligned}$$
(A.2)

This is equivalent to

$$\begin{aligned}&\bigl \langle 2\,\mu \,\overline{Q}_{e}^\natural \Big ({\textrm{sym}}(\overline{Q}_{e}^{\natural ,T}(\nabla _{(\eta _1,\eta _2)} \varphi ^\natural |d^*)[(\nabla _x\Theta )^\natural ]^{-1}-{{\mathbb {1}}}_3)\Big )[(\nabla _x\Theta )^\natural ]^{-T}e_3, \delta d^*\bigr \rangle _{\mathbb {R}^3}\nonumber \\&\quad +\bigl \langle 2\,\mu _c\,\overline{Q}_{e}^\natural \Big (\mathop {{\textrm{skew}}}\nolimits (\overline{Q}_{e}^{\natural ,T}(\nabla _{(\eta _1,\eta _2)} \varphi ^\natural |d^*)[(\nabla _x\Theta )^\natural ]^{-1})\Big )[(\nabla _x\Theta )^\natural ]^{-T}e_3,\delta d^*\bigr \rangle _{\mathbb {R}^3}\nonumber \\&\quad +\lambda {\textrm{tr}}\Big ({\textrm{sym}}(\overline{Q}_{e}^{\natural ,T}(\nabla _{(\eta _1,\eta _2)} \varphi ^\natural |d^*)[(\nabla _x\Theta )^\natural ]^{-1}-{{\mathbb {1}}}_3)\Big )\,\nonumber \\&\quad \langle \overline{Q}_{e}^\natural [(\nabla _x\Theta )^\natural ]^{-T}e_3, \delta d^* \rangle _{\mathbb {R}^3}=0\,, \end{aligned}$$
(A.3)

and it gives

$$\begin{aligned}&\bigl \langle 2\,\mu \,\overline{Q}_{e}^\natural \Big ({\textrm{sym}}(\overline{Q}_{e}^{\natural ,T}(\nabla _{(\eta _1,\eta _2)} \varphi ^\natural |d^*)[(\nabla _x\Theta )^\natural ]^{-1}-{{\mathbb {1}}}_3)\Big )n_0, \delta d^*\bigr \rangle _{\mathbb {R}^3}\nonumber \\&\qquad +\left\langle 2\,\mu _c\,\overline{Q}_{e}^\natural \Big (\mathop {{\textrm{skew}}}\nolimits (\overline{Q}_{e}^{\natural ,T}(\nabla _{(\eta _1,\eta _2)} \varphi ^\natural |d^*)[(\nabla _x\Theta )^\natural ]^{-1})\Big )n_0,\delta d^* \right\rangle _{\mathbb {R}^3}\nonumber \\&\qquad +\lambda {\textrm{tr}}\Big ({\textrm{sym}}(\overline{Q}_{e}^{\natural ,T}(\nabla _{(\eta _1,\eta _2)} \varphi ^\natural |d^*)[(\nabla _x\Theta )^\natural ]^{-1}-{{\mathbb {1}}}_3)\Big )\langle \overline{Q}_{e}^\natural n_0, \delta d^* \rangle _{\mathbb {R}^3}=0. \end{aligned}$$
(A.4)

Recall that the first Piola–Kirchhoff stress tensor in the reference configuration \(\Omega _\xi \) is given by \(S_1(F_\xi ,\overline{R}_\xi ):={\textrm{D}}_{F_\xi } {W}_{\textrm{mp}}(F_\xi ,\overline{R}_\xi )\), while the \(\textit{Biot-type stress tensor}\) is \(T_{\text {Biot}}(\overline{U}_\xi ):={\textrm{D}}_{\overline{U}_\xi }W_{\textrm{mp}}(\overline{U}_\xi )\). Since \({\textrm{D}}_{F_\xi }\overline{U}_\xi \,.\,X=\overline{R}^T_\xi X\) and

$$\begin{aligned} \langle {\textrm{D}}_{F_\xi } {W}_{\textrm{mp}}(F_\xi ,\overline{R}_\xi ),X \rangle =\langle {\textrm{D}}_{\overline{U}_\xi }W_{\textrm{mp}}(\overline{U}_\xi ),{\textrm{D}}_{F_{\xi }} \overline{U}_{\xi } X \rangle ,\ \forall X\in \mathbb {R}^{3\times 3}, \end{aligned}$$

we obtain

$$\begin{aligned} {\textrm{D}}_{F_{\xi }} {W}_{\textrm{mp}}(F_{\xi },\overline{R}_{\xi })=\overline{R}_{\xi }\,{\textrm{D}}_{\overline{U}_{\xi }}W_{\textrm{mp}}(\overline{U}_{\xi })\,. \end{aligned}$$
(A.5)

Therefore, \(S_1(F_\xi ,\overline{R}_\xi )=\overline{R}_\xi \, T_{\text {Biot}}(\overline{U}_\xi )\) and \( T_{\text {Biot}}(\overline{U}_\xi )=\overline{R}^T_\xi \, S_1(F_\xi ,\overline{R}_\xi )\). Here, we have

$$\begin{aligned} T_{\text {Biot}}(\overline{U}_\xi )=2\,\mu \,{\textrm{sym}}(\overline{U}_\xi -{{\mathbb {1}}}_3)+2\,\mu _c\,\mathop {{\textrm{skew}}}\nolimits (\overline{U}_\xi -{{\mathbb {1}}}_3)+\lambda {\textrm{tr}}({\textrm{sym}}(\overline{U}_\xi -{{\mathbb {1}}}_3)){{\mathbb {1}}}_3\,, \end{aligned}$$
(A.6)

where \(\overline{U}_{\xi }(\Theta (x_1,x_2,x_3))=\overline{U}_e(x_1,x_2,x_3)\). Thus, we can express the first Piola–Kirchhoff stress tensor

$$\begin{aligned} S_1(F_\xi ,\overline{R}_\xi )&=\overline{R}_\xi \Big [2\,\mu \,{\textrm{sym}}(\overline{R}_\xi ^T F_\xi -{{\mathbb {1}}}_3)+2\,\mu _c\,\mathop {{\textrm{skew}}}\nolimits (\overline{R}_\xi ^T F_\xi -{{\mathbb {1}}}_3)\nonumber \\&\quad +\lambda {\textrm{tr}}({\textrm{sym}}(\overline{R}_\xi ^T F_\xi -{{\mathbb {1}}}_3)){{\mathbb {1}}}_3\Big ]\,, \end{aligned}$$
(A.7)

with \(\overline{R}_\xi (\Theta (x_1,x_2,x_3))=\overline{Q}_e(x_1,x_2,x_3)\) for the elastic microrotation \(\overline{Q}_e:\Omega _h\rightarrow \text {SO(3)}\). Hence, we must have

$$\begin{aligned} \forall \delta d^*\in \mathbb {R}^3:\qquad \langle S_1((\nabla _{(\eta _1,\eta _2)} \varphi ^\natural |d^*)[(\nabla _x\Theta )^\natural ]^{-1},\overline{Q}_{e}^\natural )n_0,\delta d^* \rangle _{\mathbb {R}^3}=0, \end{aligned}$$
(A.8)

implying

$$\begin{aligned} S_1((\nabla _{(\eta _1,\eta _2)} \varphi ^\natural |d^*)&[(\nabla _x\Theta )^\natural ]^{-1},\overline{Q}_{e}^\natural )\,n_0=0 \qquad \forall \, \eta _3\in \left[ -\frac{1}{2},\frac{1}{2}\right] . \end{aligned}$$
(A.9)

In shell theories, the usual assumption is that the normal stress on the transverse boundaries are vanishing, that is

$$\begin{aligned} S_1(F_\xi ,\overline{R}_\xi )\big |_{\omega _\xi ^\pm }\, (\pm n_0)=0\,, \qquad \text {(normal stress on lower and upper faces is zero)}\,. \end{aligned}$$
(A.10)

We notice that the condition (A.9) is for all \(\eta _3\in \left[ -\frac{1}{2},\frac{1}{2}\right] \), while the condition (A.10) is only for \(\eta _3=\pm \frac{1}{2}\). Therefore, it is possible that the Cosserat-membrane type \(\Gamma \)-limit underestimates the real stresses (e.g., the transverse shear stresses). From the relation between the first Piola–Kirchhoff tensor and the Biot-stress tensor we obtain

$$\begin{aligned} T_{\text {Biot}}\Big (\overline{Q}_{e}^{\natural ,T}(\nabla _{(\eta _1,\eta _2)} \varphi ^\natural |d^*)[(\nabla _x\Theta )^\natural ]^{-1}\Big ) n_0=0\,,\qquad \forall \,\eta _3\in [-\frac{1}{2},\frac{1}{2}]\,, \end{aligned}$$
(A.11)

or, equivalently,

$$\begin{aligned} T_{\text {Biot}}(\overline{U}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural },d^*})\,n_0=0, \end{aligned}$$
(A.12)

where

$$\begin{aligned} T_{\text {Biot}}(\overline{U}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural },d^*})&=2\,\mu \,{\textrm{sym}}(\overline{U}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural },d^*}-{{\mathbb {1}}}_3)+2\,\mu _c\,\mathop {{\textrm{skew}}}\nolimits (\overline{U}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural },d^*}-{{\mathbb {1}}}_3)\nonumber \\&\quad +\lambda {\textrm{tr}}({\textrm{sym}}(\overline{U}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural },d^*}-{{\mathbb {1}}}_3)){{\mathbb {1}}}_3\,, \end{aligned}$$
(A.13)

and we have introduced the notation \(\overline{U}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural },d^*}:=\overline{Q}_{e}^{\natural ,T}(\nabla _{(\eta _1,\eta _2)} \varphi ^\natural |d^*)[(\nabla _x\Theta )^\natural ]^{-1}\). With the help of the following decomposition

$$\begin{aligned} \overline{U}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural },d^*}-{{\mathbb {1}}}_3&=(\overline{Q}_{e}^{\natural ,T}\nabla _{(\eta _1,\eta _2)} \varphi ^\natural -(\nabla y_0)^\natural |0)[(\nabla _x\Theta )^\natural ]^{-1}\nonumber \\&\quad +(0|0|\overline{Q}_{e}^{\natural ,T}d^*-n_0)[(\nabla _x\Theta )^\natural ]^{-1}\nonumber \\&= \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } +(0|0|\overline{Q}_{e}^{\natural ,T}d^*-n_0)[(\nabla _x\Theta )^\natural ]^{-1}\,, \end{aligned}$$
(A.14)

with \(\mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } }=(\overline{Q}_{e}^{\natural ,T}\nabla _{(\eta _1,\eta _2)} \varphi ^\natural -(\nabla y_0)^\natural |0)[(\nabla _x\Theta )^\natural ]^{-1}\), and relations (A.29)-(A.31), the relation (A.13) can be expressed as

$$\begin{aligned} T_{\text {Biot}}(\overline{U}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural },d^*})n_0&=\mu \,\Big ( \mathcal {E}^T_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } n_0+(\overline{Q}_{e}^{\natural ,T}d^*-n_0)\nonumber \\&\quad +[(\nabla _x\Theta )^\natural ]^{-T}(0|0|\overline{Q}_{e}^{\natural ,T}d^*-n_0)^Tn_0\Big )\nonumber \\&\quad +\mu _c\,\Big (- \mathcal {E}^T_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } n_0+(\overline{Q}_{e}^{\natural ,T}d^*-n_0)\nonumber \\&\quad -[(\nabla _x\Theta )^\natural ]^{-T}(0|0|\overline{Q}_{e}^{\natural ,T}d^*-n_0)^Tn_0\Big )\nonumber \\&\quad +\lambda \Big (\langle \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } ,{{\mathbb {1}}}_3 \rangle n_0+(\overline{Q}_{e}^{\natural ,T}d^*-n_0)n_0\otimes n_0\Big )\nonumber \\&= (\mu \,+\mu _c\,)(\overline{Q}_{e}^{\natural ,T}d^*-n_0)+(\mu \,-\mu _c\,) \mathcal {E}^T_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } n_0\nonumber \\&\quad +(\mu \,-\mu _c\,)((0|0|\overline{Q}_{e}^{\natural ,T}d^*-n_0)[(\nabla _x\Theta )^\natural ]^{-1})^Tn_0\nonumber \\&\quad +\lambda {\textrm{tr}}( \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } )n_0+\lambda (\overline{Q}_{e}^{\natural ,T}d^*-n_0)n_0\otimes n_0, \end{aligned}$$
(A.15)

and the condition (A.12) on \(T_{\text {Biot}}\) reads

$$\begin{aligned}&(\mu \,+\mu _c\,)(\overline{Q}_{e}^{\natural ,T}d^*-n_0)+(\mu \,-\mu _c\,)(\overline{Q}_{e}^{\natural ,T}d^*-n_0)n_0\otimes n_0\nonumber \\&\quad +\lambda (\overline{Q}_{e}^{\natural ,T}d^*-n_0)n_0\otimes n_0\nonumber \\&=-\Big [(\mu \,-\mu _c\,)\mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } }^Tn_0+\lambda {\textrm{tr}}( \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } )n_0\Big ], \end{aligned}$$
(A.16)

where \(((0|0|\overline{Q}_{e}^{\natural ,T}d^*-n_0)[(\nabla _x\Theta )^\natural ]^{-1})^Tn_0=(\overline{Q}_{e}^{\natural ,T}d^*-n_0)n_0\otimes n_0\). Before continuing the calculations, we introduce the tensor

$$\begin{aligned} \textrm{A}_{y_0}&:=(\nabla y_0|0)\,\,[(\nabla _x\Theta )(0) \,]^{-1}={{\mathbb {1}}}_3-n_0\otimes n_0\in \textrm{Sym}(3), \end{aligned}$$
(A.17)

and we notice that, identically as in the proof of Lemma 4.3 in Ghiba et al. (2020a), we can show that

$$\begin{aligned} \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } \textrm{A}_{y_0}=\mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } \qquad \Longleftrightarrow \qquad \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } n_0\otimes n_0=0. \end{aligned}$$
(A.18)

Actually, for an arbitrary matrix \(X=(*|*|0)\,[ \nabla _x \Theta (0)]^{-1}\), since \(\textrm{A}_{y_0}^2=\textrm{A}_{y_0}\in \textrm{Sym}(3)\) and \(X\textrm{A}_{y_0}=X\), we have

$$\begin{aligned} \bigl \langle ({{\mathbb {1}}}_3-\textrm{A}_{y_0}) \,X , \textrm{A}_{y_0} \,X\bigr \rangle = \bigl \langle (\textrm{A}_{y_0}-\textrm{A}_{y_0}^2) \,X , \,X\bigr \rangle =0, \end{aligned}$$

but also

$$\begin{aligned} ({{\mathbb {1}}}_3-\textrm{A}_{y_0}) \,X^T=\big (X({{\mathbb {1}}}_3-\textrm{A}_{y_0})\big )^T=\big (X-X\textrm{A}_{y_0}\big )^T=0, \end{aligned}$$
(A.19)

and consequently

$$\begin{aligned} \bigl \langle X^T ({{\mathbb {1}}}_3-\textrm{A}_{y_0}) , \textrm{A}_{y_0} \,X\bigr \rangle = 0 \qquad \text {as well as} \qquad \bigl \langle X^T ({{\mathbb {1}}}_3-\textrm{A}_{y_0}) ,({{\mathbb {1}}}_3-\textrm{A}_{y_0}) \,X\bigr \rangle = 0. \end{aligned}$$

In addition, since \(\textrm{A}_{y_0}={{\mathbb {1}}}_3-(0|0|n_0)\,(0|0|n_0)^T=\,{{\mathbb {1}}}_3-n_0\otimes n_0\), the following equalities holds

$$\begin{aligned} \Vert ({{\mathbb {1}}}_3-\textrm{A}_{y_0})\,X\Vert ^2&= \bigl \langle \,X,({{\mathbb {1}}}_3-\textrm{A}_{y_0})^2\,X\bigr \rangle = \bigl \langle \,X,({{\mathbb {1}}}_3-\textrm{A}_{y_0})\,X\bigr \rangle \nonumber \\&= \bigl \langle \,X,(0|0|n_0)\,(0|0|n_0)^T\,X\bigr \rangle \nonumber \\&= \bigl \langle \,(0|0|n_0)^T X,(0|0|n_0)^T\,X\bigr \rangle \nonumber \\&=\Vert X\,(0|0|n_0)^T\Vert ^2 =\Vert X^T\,(0|0|n_0)\Vert ^2=\Vert X^T\,n_0\Vert ^2. \end{aligned}$$
(A.20)

We have the following decomposition

$$\begin{aligned} (\overline{Q}_{e}^{\natural ,T}d^*-n_0)&={{\mathbb {1}}}_3(\overline{Q}_{e}^{\natural ,T}d^*-n_0)=(A_{y_0}+n_0\otimes n_0)(\overline{Q}_{e}^{\natural ,T}d^*-n_0)\nonumber \\&= A_{y_0}(\overline{Q}_{e}^{\natural ,T}d^*-n_0)+n_0\otimes n_0(\overline{Q}_{e}^{\natural ,T}d^*-n_0). \end{aligned}$$
(A.21)

By using that

$$\begin{aligned}&n_0\otimes n_0 (\overline{Q}_{e}^{\natural ,T}d^*-n_0)=n_0\langle n_0,(\overline{Q}_{e}^{\natural ,T}d^*-n_0) \rangle =\langle (\overline{Q}_{e}^{\natural ,T}d^*-n_0),n_0 \rangle n_0\nonumber \\&\quad =(\overline{Q}_{e}^{\natural ,T}d^*-n_0) n_0\otimes n_0, \end{aligned}$$
(A.22)

and with (A.16), we get

$$\begin{aligned}&(\mu \,+\mu _c\,)A_{y_0}(\overline{Q}_{e}^{\natural ,T}d^*-n_0)\nonumber \\&\qquad +(\mu \,+\mu _c\,)n_0\otimes n_0(\overline{Q}_{e}^{\natural ,T}d^*-n_0)+(\mu \,-\mu _c\,)n_0\otimes n_0(\overline{Q}_{e}^{\natural ,T}d^*-n_0)\nonumber \\&\qquad +\lambda \, n_0\otimes n_0(\overline{Q}_{e}^{\natural ,T}d^*-n_0)\nonumber \\&\quad =-\Big [(\mu \,-\mu _c\,) \mathcal {E}^T_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } n_0+\lambda {\textrm{tr}}( \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } )n_0\Big ]. \end{aligned}$$
(A.23)

Therefore,

$$\begin{aligned}&\Big ((\mu \,+\mu _c\,)A_{y_0}+(2\,\mu \,+\lambda )n_0\otimes n_0\Big )(\overline{Q}_{e}^{\natural ,T}d^*-n_0)\nonumber \\&\quad =-\Big [(\mu \,-\mu _c\,) \mathcal {E}^T_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } n_0+\lambda {\textrm{tr}}( \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } )n_0\Big ]. \end{aligned}$$
(A.24)

Direct calculation shows

$$\begin{aligned}&\Big ((\mu \,+\mu _c\,)A_{y_0}+(2\,\mu \,+\lambda )n_0\otimes n_0\Big )^{-1}:=\Big (\frac{1}{\mu \,+\mu _c\,}A_{y_0}+\frac{1}{2\,\mu \,+\lambda }n_0\otimes n_0\Big )\,. \end{aligned}$$
(A.25)

Next, by using

$$\begin{aligned}&A_{y_0}n_0=({{\mathbb {1}}}_3-n_0\otimes n_0)n_0=n_0-n_0\langle n_0,n_0 \rangle =n_0-n_0=0,\nonumber \\&n_0\otimes n_0 \,\mathcal {E}^T_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } n_0 = (0|0|n_0)(0|0|n_0)^T \mathcal {E}^T_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } n_0\nonumber \\&=(0|0|n_0)\Big ((\overline{Q}_{e}^{\natural ,T}\nabla _{(\eta _1,\eta _2)} \varphi ^\natural -(\nabla y_0)^\natural |0)[(\nabla _x\Theta )^\natural ]^{-1}(0|0|n_0)\Big )^T n_0\nonumber \\&\quad =(0|0|n_0)\Big ((\overline{Q}_{e}^{\natural ,T}\nabla _{(\eta _1,\eta _2)} \varphi ^\natural -(\nabla y_0)^\natural |0)(0|0|e_3)\Big )^T n_0=0\,, \end{aligned}$$
(A.26)

eq. (A.24) can be written as

$$\begin{aligned} \overline{Q}_{e}^{\natural ,T}d^*-n_0&=-\Big [\frac{1}{\mu \,+\mu _c\,}A_{y_0}+\frac{1}{2\,\mu \,+\lambda }n_0\otimes n_0\Big ]\nonumber \\&\quad \times \Big [(\mu \,-\mu _c\,) \mathcal {E}^T_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } n_0+\lambda {\textrm{tr}}( \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } )n_0\Big ]\nonumber \\&=-\Big [\frac{\mu \,-\mu _c\,}{\mu \,+\mu _c\,}A_{y_0} \mathcal {E}^T_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } n_0\nonumber \\&\quad +\frac{\mu \,-\mu _c\,}{2\,\mu \,+\lambda }\,n_0\otimes n_0\, \mathcal {E}^T_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } n_0+\frac{\lambda }{\mu \,+\mu _c\,}{\textrm{tr}}( \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } )A_{y_0}n_0\nonumber \\&\quad +\frac{\lambda }{2\,\mu \,+\lambda }{\textrm{tr}}( \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } )(n_0\otimes n_0) n_0\Big ]\nonumber \\&=-\Big [\frac{\mu \,-\mu _c\,}{\mu \,+\mu _c\,}A_{y_0} \mathcal {E}^T_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } n_0+\frac{\lambda }{2\,\mu \,+\lambda }{\textrm{tr}}( \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } )n_0\Big ]\,. \end{aligned}$$
(A.27)

Simplifying (A.27), we obtain

$$\begin{aligned} d^*&=\Big (1-\frac{\lambda }{2\,\mu \,+\lambda }\langle \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } ,{{\mathbb {1}}}_3 \rangle \Big ) \overline{Q}_{e}^\natural n_0+\frac{\mu _c\,-\mu \,}{\mu _c\,+\mu \,}\;\overline{Q}_{e}^\natural \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } }^T n_0. \end{aligned}$$

In terms of \(\overline{Q}_{e}^\natural =\overline{R}^\natural Q_0^{\natural ,T}\) we obtain the following expression for \(d^*\)

$$\begin{aligned} d^*&=\Big (1-\frac{\lambda }{2\,\mu \,+\lambda }\langle (Q_0^{\natural }\overline{R}^{\natural ,T}\nabla _{(\eta _1,\eta _2)} \varphi ^\natural -(\nabla y_0)^\natural |0)[(\nabla _x\Theta )^\natural ]^{-1},{{\mathbb {1}}}_3 \rangle \Big ) \overline{R}^{\natural }Q_0^{\natural ,T}n_0\nonumber \\&\quad +\frac{\mu _c\,-\mu \,}{\mu _c\,+\mu \,}\;\overline{R}^{\natural }Q_0^{\natural ,T}\Big ((Q_0^{\natural }\overline{R}^{\natural ,T}\nabla _{(\eta _1,\eta _2)} \varphi ^\natural -(\nabla y_0)^\natural |0)[(\nabla _x\Theta )^\natural ]^{-1}\Big )^Tn_0. \end{aligned}$$
(A.28)

1.2 Calculations for the \(T_{\text {Biot}}\) Stress

Here, we present the lengthy calculation related to the \(T_{\text {Biot}}\) stress tensor in expression (A.13). We have

$$\begin{aligned}&2{\textrm{sym}}(\overline{U}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural },d^*}-{{\mathbb {1}}}_3)n_0\nonumber \\&\quad = \Big (2{\textrm{sym}}( \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } )+2{\textrm{sym}}((0|0|\overline{Q}_{e}^{\natural ,T}d^*-n_0)[(\nabla _x\Theta )^\natural ]^{-1})\Big )n_0\nonumber \\&\quad = \Big ( \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } + \mathcal {E}^T_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } \Big )n_0+\Big ((0|0|\overline{Q}_{e}^{\natural ,T}d^*-n_0)[(\nabla _x\Theta )^\natural ]^{-1}\nonumber \\&\qquad +[(\nabla _x\Theta )^\natural ]^{-T}(0|0|\overline{Q}_{e}^{\natural ,T}d^*-n_0)^T\Big )n_0\nonumber \\&\quad =\underbrace{ \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } n_0}_{=0}+ \mathcal {E}^T_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } n_0+(0|0|\overline{Q}_{e}^{\natural ,T}d^*-n_0)[(\nabla _x\Theta )^\natural ]^{-1}n_0\nonumber \\&\qquad +[(\nabla _x\Theta )^\natural ]^{-T}(0|0|\overline{Q}_{e}^{\natural ,T}d^*-n_0)^Tn_0\nonumber \\&\quad = \mathcal {E}^T_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } n_0+(0|0|\overline{Q}_{e}^{\natural ,T}d^*-n_0)e_3+[(\nabla _x\Theta )^\natural ]^{-T}(0|0|\overline{Q}_{e}^{\natural ,T}d^*-n_0)^Tn_0\nonumber \\&\quad = \mathcal {E}^T_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } n_0+(\overline{Q}_{e}^{\natural ,T}d^*-n_0)+[(\nabla _x\Theta )^\natural ]^{-T}(0|0|\overline{Q}_{e}^{\natural ,T}d^*-n_0)^Tn_0, \end{aligned}$$
(A.29)

and

$$\begin{aligned} 2\mathop {{\textrm{skew}}}\nolimits (\overline{U}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural },d^*}&-{{\mathbb {1}}}_3)n_0= \Big (2\mathop {{\textrm{skew}}}\nolimits ( \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } )+2\mathop {{\textrm{skew}}}\nolimits ((0|0|\overline{Q}_{e}^{\natural ,T}d^*-n_0)\nonumber \\&\quad [(\nabla _x\Theta )^\natural ]^{-1})\Big )n_0\nonumber \\&= \Big ( \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } - \mathcal {E}^T_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } \Big )n_0+\Big ((0|0|\overline{Q}_{e}^{\natural ,T}d^*-n_0)[(\nabla _x\Theta )^\natural ]^{-1}\nonumber \\&\quad -[(\nabla _x\Theta )^\natural ]^{-T}(0|0|\overline{Q}_{e}^{\natural ,T}d^*-n_0)^T\Big )n_0\nonumber \\&=- \mathcal {E}^T_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } n_0+(\overline{Q}_{e}^{\natural ,T}d^*-n_0)\nonumber \\&\quad -[(\nabla _x\Theta )^\natural ]^{-T}(0|0|\overline{Q}_{e}^{\natural ,T}d^*-n_0)^Tn_0. \end{aligned}$$
(A.30)

Calculating the trace of \(T_{\text {Biot}}\) gives

$$\begin{aligned} {\textrm{tr}}({\textrm{sym}}(\overline{U}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural },d^*}-{{\mathbb {1}}}_3))n_0&=\langle {\textrm{sym}}(\overline{U}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural },d^*}-{{\mathbb {1}}}_3),{{\mathbb {1}}}_3 \rangle n_0\nonumber \\&=\Big (\langle \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } ,{{\mathbb {1}}}_3 \rangle +\langle (0|0|\overline{Q}_{e}^{\natural ,T}d^*-n_0)[(\nabla _x\Theta )^\natural ]^{-1},{{\mathbb {1}}}_3 \rangle \Big )n_0\nonumber \\&=\langle \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } ,{{\mathbb {1}}}_3 \rangle n_0+(\overline{Q}_{e}^{\natural ,T}d^*-n_0)n_0\otimes n_0, \end{aligned}$$
(A.31)

where we have used that \(\langle (0|0|\overline{Q}_{e}^{\natural ,T}d^*-n_0)[(\nabla _x\Theta )^\natural ]^{-1},{{\mathbb {1}}}_3 \rangle _{\mathbb {R}^{3\times 3}}\,n_0 =\langle (\overline{Q}_{e}^{\natural ,T}d^*-n_0),n_0 \rangle _{\mathbb {R}^3}\,n_0=(\overline{Q}_{e}^{\natural ,T}d^*-n_0)\,n_0\otimes n_0\).

1.3 Calculations for the Homogenized Membrane Energy

In this part, we do the calculations for obtaining the minimizer separately. By inserting \(d^*\) in the membrane part of the relation (4.10), we have

$$\begin{aligned} \Vert {\textrm{sym}}(\overline{U}_h^{\natural }-{{\mathbb {1}}}_3)\Vert ^2&=\Vert {\textrm{sym}}(\overline{Q}_{e}^{\natural ,T}(\nabla _{(\eta _1,\eta _2)} \varphi ^\natural |d^*)[(\nabla _x\Theta )^\natural ]^{-1}-{{\mathbb {1}}}_3)\Vert ^2\nonumber \\&=\Vert {\textrm{sym}}\Big (\underbrace{\overline{Q}_{e}^{\natural ,T}(\nabla _{(\eta _1,\eta _2)} \varphi ^\natural -[\nabla y_0]^\natural |0)[(\nabla _x\Theta )^\natural ]^{-1}}_{= \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } }\nonumber \\&\quad +(0|0|\overline{Q}_{e}^{\natural ,T}d^*-n_0)[(\nabla _x\Theta )^\natural ]^{-1}\Big ))\Vert ^2\nonumber \\&=\Vert {\textrm{sym}}\mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } \Vert ^2+ \Vert {\textrm{sym}}((0|0|\overline{Q}_{e}^{\natural ,T}d^*-n_0)[(\nabla _x\Theta )^\natural ]^{-1})\Vert ^2\nonumber \\&\quad +2\left\langle {\textrm{sym}}\mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } ,{\textrm{sym}}((0|0|\overline{Q}_{e}^{\natural ,T}d^*-n_0)[(\nabla _x\Theta )^\natural ]^{-1}) \right\rangle \nonumber \\&= \Vert {\textrm{sym}}\mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } \Vert ^2+\Vert {\textrm{sym}}\Big (\frac{\mu _c\,-\mu \,}{\mu _c\,+\mu \,} \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } ^Tn_0\otimes n_0\nonumber \\&\quad -\frac{\lambda }{2\,\mu \,+\lambda }{\textrm{tr}}( \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } )n_0\otimes n_0\Big )\Vert ^2\nonumber \\&\quad +2\left\langle {\textrm{sym}}\mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } ,{\textrm{sym}}\Big (\frac{\mu _c\,-\mu \,}{\mu _c\,+\mu \,} \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } ^Tn_0\otimes n_0 -\frac{\lambda }{2\,\mu \,+\lambda }{\textrm{tr}}( \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } )n_0\otimes n_0\Big ) \right\rangle . \end{aligned}$$
(A.32)

We have

$$\begin{aligned}&\Vert {\textrm{sym}}\Big (\frac{\mu _c\,-\mu \,}{\mu _c\,+\mu \,} \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } ^Tn_0\otimes n_0\nonumber -\frac{\lambda }{2\,\mu \,+\lambda }{\textrm{tr}}( \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } )n_0\otimes n_0\Big )\Vert ^2\nonumber \\&\quad =\frac{(\mu _c\,-\mu \,)^2}{(\mu _c\,+\mu \,)^2}\Vert {\textrm{sym}}( \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } }^T n_0\otimes n_0)\Vert ^2\nonumber \\&\qquad +\frac{\lambda ^2}{(2\,\mu \,+\lambda )^2}{\textrm{tr}}( \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } )^2\Vert n_0\otimes n_0\Vert ^2\nonumber \\&\qquad -2\,\frac{\mu _c\,-\mu \,}{\mu _c\,+\mu \,}\;\frac{\lambda }{2\,\mu \,+\lambda }{\textrm{tr}}( \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } )\left\langle {\textrm{sym}}( \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } ^Tn_0\otimes n_0),n_0\otimes n_0 \right\rangle \nonumber \\&\quad = \frac{(\mu _c\,-\mu \,)^2}{(\mu _c\,+\mu \,)^2}\left\langle {\textrm{sym}}( \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } }^T n_0\otimes n_0),{\textrm{sym}}( \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } }^T n_0\otimes n_0) \right\rangle \nonumber \\&\qquad +\frac{\lambda ^2}{(2\,\mu \,+\lambda )^2}{\textrm{tr}}( \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } )^2\nonumber \\&\qquad -\frac{\mu _c\,-\mu \,}{\mu _c\,+\mu \,}\;\frac{\lambda }{2\,\mu \,+\lambda }{\textrm{tr}}( \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } )\left\langle \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } }^T n_0\otimes n_0,n_0\otimes n_0 \right\rangle \nonumber \\&\qquad -\frac{\mu _c\,-\mu \,}{\mu _c\,+\mu \,}\;\frac{\lambda }{2\,\mu \,+\lambda }{\textrm{tr}}( \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } )\left\langle n_0\otimes n_0\, \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } ,n_0\otimes n_0 \right\rangle \nonumber \\&\qquad = \frac{(\mu _c\,-\mu \,)^2}{4(\mu _c\,+\mu \,)^2}\langle \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } }^T n_0\otimes n_0, \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } }^T n_0\otimes n_0 \rangle \nonumber \\&\qquad +\frac{(\mu _c\,-\mu \,)^2}{4(\mu _c\,+\mu \,)^2}\langle \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } }^T n_0\otimes n_0,n_0\otimes n_0 \, \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } \rangle \nonumber \\&\qquad +\frac{(\mu _c\,-\mu \,)^2}{4(\mu _c\,+\mu \,)^2}\langle n_0\otimes n_0\, \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } , \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } }^T n_0\otimes n_0 \rangle \nonumber \\&\qquad +\frac{(\mu _c\,-\mu \,)^2}{4(\mu _c\,+\mu \,)^2}\langle n_0\otimes n_0\, \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } ,n_0\otimes n_0\, \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } \rangle \nonumber \\&\qquad +\frac{\lambda ^2}{(2\,\mu \,+\lambda )^2}{\textrm{tr}}( \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } )^2=\frac{(\mu _c\,-\mu \,)^2}{2(\mu _c\,+\mu \,)^2}\Vert \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } }^T n_0\Vert ^2 +\frac{\lambda ^2}{(2\,\mu \,+\lambda )^2}{\textrm{tr}}( \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } )^2. \end{aligned}$$
(A.33)

Since, using (A.18) we have \(\langle \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } ^T n_0\otimes n_0,n_0\otimes n_0 \rangle = \langle n_0\otimes n_0,\mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } n_0\otimes n_0 \rangle =0\),

and since we have used the matrix expression \( \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } =(*|*|0)[(\nabla _x\Theta )^\natural ]^{-1}\) and \(n_0\otimes n_0=(0|0|n_0)[(\nabla _x\Theta )^\natural (0) ]^{-1}\), we deduce

$$\begin{aligned}&\langle \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } }^T n_0\otimes n_0, \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } }^T n_0\otimes n_0 \rangle \nonumber \\&\quad =\bigl \langle \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } }^T (0|0|n_0)[(\nabla _x\Theta )^\natural (0) ]^{-1}, \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } }^T (0|0|n_0)[(\nabla _x\Theta )^\natural (0) ]^{-1}\bigr \rangle \nonumber \\&\quad =\bigl \langle (0|0| \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } }^T n_0)^T(0|0| \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } }^T n_0), [(\nabla _x\Theta )^\natural (0) ]^{-1}[(\nabla _x\Theta )^\natural (0) ]^{-T}\bigr \rangle \nonumber \\&\quad =\langle (0|0| \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } }^T n_0)^T(0|0| \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } }^T n_0),(\widehat{\textrm{I}}_{y_0})^{-1} \rangle \nonumber \\&\quad =\left\langle \begin{pmatrix} 0&{}0&{}0\\ 0&{}0&{}0\\ {} &{} \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } }^T n_0 \end{pmatrix}(0|0| \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } }^T n_0),\begin{pmatrix} *&{}*&{}0\\ *&{}*&{}0\\ 0&{}0&{}1 \end{pmatrix} \right\rangle \nonumber \\&\quad =\langle \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } }^T n_0, \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } }^T n_0 \rangle =\Vert \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } }^T n_0\Vert ^2. \end{aligned}$$
(A.34)

On the other hand,

$$\begin{aligned} 2&\left\langle {\textrm{sym}}\mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } ,{\textrm{sym}}(\frac{\mu _c\,-\mu \,}{\mu _c\,+\mu \,}\mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } }^Tn_0\otimes n_0-\frac{\lambda }{2\,\mu \,+\lambda }{\textrm{tr}}( \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } )n_0\otimes n_0) \right\rangle \nonumber \\&=\frac{1}{2}\left\langle \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } + \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } }^T,\frac{\mu _c\,-\mu \,}{\mu _c\,+\mu \,}\mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } }^Tn_0\otimes n_0+\frac{\mu _c\,-\mu \,}{\mu _c\,+\mu \,}n_0\otimes n_0\; \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } }\right. \nonumber \\&\quad \left. -\frac{2\lambda }{2\,\mu \,+\lambda }{\textrm{tr}}( \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } )n_0\otimes n_0 \right\rangle \nonumber \\&=\frac{\mu _c\,-\mu \,}{2(\mu _c\,+\mu \,)}\left\langle \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } , \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } }^T n_0\otimes n_0 \right\rangle +\frac{\mu _c\,-\mu \,}{2(\mu _c\,+\mu \,)}\left\langle \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } ,n_0\otimes n_0\; \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } \right\rangle \nonumber \\&\quad -\frac{\lambda }{(2\,\mu \,+\lambda )}{\textrm{tr}}( \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } )\langle \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } ,n_0\otimes n_0 \rangle +\frac{\mu _c\,-\mu \,}{2(\mu _c\,+\mu \,)}\left\langle \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } }^T, \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } }^T n_0\otimes n_0 \right\rangle \nonumber \\&\quad +\frac{\mu _c\,-\mu \,}{2(\mu _c\,+\mu \,)}\left\langle \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } }^T,n_0\otimes n_0\, \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } \right\rangle -\frac{\lambda }{(2\,\mu \,+\lambda )}{\textrm{tr}}( \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } )\langle \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } }^T,n_0\otimes n_0 \rangle \nonumber \\&\quad =\frac{\mu _c\,-\mu \,}{\mu _c\,+\mu \,}\Vert \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } }^T n_0\Vert ^2, \end{aligned}$$
(A.35)

due to (A.20). Therefore, (A.32) can be reduced to

$$\begin{aligned}&\Vert {\textrm{sym}}(\overline{Q}_{e}^{\natural ,T}(\nabla _{(\eta _1,\eta _2)} \varphi ^\natural |c)[(\nabla _x\Theta )^\natural ]^{-1}-{{\mathbb {1}}}_3)\Vert ^2 =\Vert {\textrm{sym}}\mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } \Vert ^2+\frac{(\mu _c\,-\mu \,)^2}{2(\mu _c\,+\mu \,)^2}\Vert \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } }^T n_0\Vert ^2\nonumber \\&\qquad +\frac{\lambda ^2}{(2\,\mu \,+\lambda )^2}{\textrm{tr}}( \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } )^2+\frac{\mu _c\,-\mu \,}{(\mu _c\,+\mu \,)}\Vert \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } }^T n_0\Vert ^2. \end{aligned}$$
(A.36)

Now we continue the calculations for the skew symmetric part,

$$\begin{aligned}&\Vert \mathop {{\textrm{skew}}}\nolimits (\overline{Q}_{e}^{\natural ,T}(\nabla _{(\eta _1,\eta _2)} \varphi ^\natural |d^*)[(\nabla _x\Theta )^\natural ]^{-1})\Vert ^2\nonumber \\&\quad =\Vert \mathop {{\textrm{skew}}}\nolimits (\overline{Q}_{e}^{\natural ,T}(\nabla _{(\eta _1,\eta _2)} \varphi ^\natural |0)[(\nabla _x\Theta )^\natural ]^{-1})\Vert ^2+ \Vert \mathop {{\textrm{skew}}}\nolimits ((0|0|\overline{Q}_{e}^{\natural ,T}d^*)[(\nabla _x\Theta )^\natural ]^{-1})\Vert ^2\nonumber \\&\quad +2\bigl \langle \mathop {{\textrm{skew}}}\nolimits (\overline{Q}_{e}^{\natural ,T}(\nabla _{(\eta _1,\eta _2)} \varphi ^\natural |0)[(\nabla _x\Theta )^\natural ]^{-1}), \mathop {{\textrm{skew}}}\nolimits ((0|0|\overline{Q}_{e}^{\natural ,T}d^*)[(\nabla _x\Theta )^\natural ]^{-1})\bigr \rangle . \end{aligned}$$
(A.37)

In a similar manner, we calculate the terms separately. Since \(n_0\otimes n_0\) is symmetric, we obtain

$$\begin{aligned}&\Vert \mathop {{\textrm{skew}}}\nolimits ((0|0|\overline{Q}_{e}^{\natural ,T}d^*)[(\nabla _x\Theta )^\natural ]^{-1})\Vert ^2\\&\quad =\Vert \mathop {{\textrm{skew}}}\nolimits (n_0\otimes n_0+\frac{\mu _c\,-\mu \,}{\mu _c\,+\mu \,} \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } }^T \, n_0\otimes n_0-\frac{\lambda }{2\,\mu \,+\lambda }{\textrm{tr}}( \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } }^T )\, n_0\otimes n_0)\Vert ^2\\&\quad =\frac{(\mu _c\,-\mu \,)^2}{(\mu _c\,+\mu \,)^2}\Vert \mathop {{\textrm{skew}}}\nolimits ( \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } }^T\, n_0\otimes n_0)\Vert ^2. \end{aligned}$$

But, we have

$$\begin{aligned} \Vert \mathop {{\textrm{skew}}}\nolimits ( \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } ^Tn_0\otimes n_0)\Vert ^2&=\frac{1}{4}\left\langle \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } }^T n_0\otimes n_0, \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } }^T\, n_0\otimes n_0 \right\rangle \nonumber \\&\quad -\frac{1}{4}\left\langle \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } }^T n_0\otimes n_0,n_0\otimes n_0 \, \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } \right\rangle \nonumber \\&\quad -\frac{1}{4}\left\langle n_0\otimes n_0 \, \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } , \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } }^T\, n_0\otimes n_0 \right\rangle \nonumber \\&\quad +\frac{1}{4}\left\langle n_0\otimes n_0\, \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } ,n_0\otimes n_0 \, \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } \right\rangle =\frac{1}{2}\Vert \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } }^T n_0\Vert ^2\,, \end{aligned}$$
(A.38)

where we used the fact that \((n_0\otimes n_0)^2=(n_0\otimes n_0)\). The difficulty in the skew symmetric part of (A.37) is solved in the following calculation

$$\begin{aligned}&2\bigl \langle \mathop {{\textrm{skew}}}\nolimits (\overline{Q}_{e}^{\natural ,T}(\nabla _{(\eta _1,\eta _2)} \varphi ^\natural |0)[(\nabla _x\Theta )^\natural ]^{-1}), \mathop {{\textrm{skew}}}\nolimits ((0|0|\overline{Q}_{e}^{\natural ,T}d^*)[(\nabla _x\Theta )^\natural ]^{-1})\bigr \rangle \nonumber \\&\quad = 2\,\frac{(\mu _c\,-\mu \,)}{(\mu _c\,+\mu \,)}\left\langle \mathop {{\textrm{skew}}}\nolimits (\overline{Q}_{e}^{\natural ,T}(\nabla _{(\eta _1,\eta _2)} \varphi ^\natural |0)[(\nabla _x\Theta )^\natural ]^{-1}),\mathop {{\textrm{skew}}}\nolimits ( \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } }^T n_0\otimes n_0) \right\rangle \nonumber \\&\quad =\frac{(\mu _c\,-\mu \,)}{2(\mu _c\,+\mu \,)}\langle \overline{Q}_{e}^{\natural ,T}(\nabla _{(\eta _1,\eta _2)} \varphi ^\natural |0)[(\nabla _x\Theta )^\natural ]^{-1}, \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } }^T n_0\otimes n_0 \rangle \nonumber \\&\qquad -\frac{(\mu _c\,-\mu \,)}{2(\mu _c\,+\mu \,)}\langle \overline{Q}_{e}^{\natural ,T}(\nabla _{(\eta _1,\eta _2)} \varphi ^\natural |0)[(\nabla _x\Theta )^\natural ]^{-1},n_0\otimes n_0\, \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } \rangle \nonumber \\&\qquad -\frac{(\mu _c\,-\mu \,)}{2(\mu _c\,+\mu \,)}\langle (\overline{Q}_{e}^{\natural ,T}(\nabla _{(\eta _1,\eta _2)} \varphi ^\natural |0)[(\nabla _x\Theta )^\natural ]^{-1})^T, \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } }^T n_0\otimes n_0 \rangle \nonumber \\&\qquad +\frac{(\mu _c\,-\mu \,)}{2(\mu _c\,+\mu \,)}\langle (\overline{Q}_{e}^{\natural ,T}(\nabla _{(\eta _1,\eta _2)} \varphi ^\natural |0)[(\nabla _x\Theta )^\natural ]^{-1})^T,n_0\otimes n_0 \, \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } \rangle \nonumber \\&\quad =-\frac{(\mu _c\,-\mu \,)}{(\mu _c\,+\mu \,)}\Vert \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } }^T n_0\Vert ^2. \end{aligned}$$
(A.39)

Therefore,

$$\begin{aligned}&2\bigl \langle \mathop {{\textrm{skew}}}\nolimits (\overline{Q}_{e}^{\natural ,T}(\nabla _{(\eta _1,\eta _2)} \varphi ^\natural |0)[(\nabla _x\Theta )^\natural ]^{-1}), \mathop {{\textrm{skew}}}\nolimits ((0|0|\overline{Q}_{e}^{\natural ,T}d^*)[(\nabla _x\Theta )^\natural ]^{-1})\bigr \rangle \nonumber \\&\quad =-\frac{(\mu _c\,-\mu \,)}{(\mu _c\,+\mu \,)}\Vert \mathcal {E}^T_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } n_0\Vert ^2\,, \end{aligned}$$
(A.40)

and we obtain

$$\begin{aligned}&\Vert \mathop {{\textrm{skew}}}\nolimits (\overline{Q}_{e}^{\natural ,T}(\nabla _{(\eta _1,\eta _2)} \varphi ^\natural |d^*)[(\nabla _x\Theta )^\natural ]^{-1})\Vert ^2\nonumber \\&\quad =\Vert \mathop {{\textrm{skew}}}\nolimits (\overline{Q}_{e}^{\natural ,T}(\nabla _{(\eta _1,\eta _2)} \varphi ^\natural |0)[(\nabla _x\Theta )^\natural ]^{-1})\Vert ^2 +\frac{(\mu _c\,-\mu \,)^2}{2(\mu _c\,+\mu \,)^2}\Vert \mathcal {E}^T_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } n_0\Vert ^2\nonumber \\&\qquad -\frac{(\mu _c\,-\mu \,)}{(\mu _c\,+\mu \,)}\Vert \mathcal {E}^T_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } n_0\Vert ^2. \end{aligned}$$
(A.41)

The last requirement for our calculations, is

$$\begin{aligned}&\Big [{\textrm{tr}}\Big ({\textrm{sym}}(\overline{Q}_{e}^{\natural ,T}(\nabla _{(\eta _1,\eta _2)} \varphi ^\natural |d^*)[(\nabla _x\Theta )^\natural ]^{-1}-{{\mathbb {1}}}_3)\Big )\Big ]^2\nonumber \\&\quad =\Big ({\textrm{tr}}\big ({\textrm{sym}}((\overline{Q}_{e}^{\natural ,T}\nabla _{(\eta _1,\eta _2)} \varphi ^\natural -[\nabla y_0]^\natural |0)[(\nabla _x\Theta )^\natural ]^{-1})\big )\nonumber \\&\qquad +{\textrm{tr}}\big ({\textrm{sym}}((0|0|\overline{Q}_{e}^{\natural ,T}d^*-n_0)[(\nabla _x\Theta )^\natural ]^{-1})\big )\Big )^2\nonumber \\&\quad =\Big ({\textrm{tr}}( \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } )+\frac{(\mu _c\,-\mu \,)}{2(\mu _c\,+\mu \,)}(\langle \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } }^T n_0\otimes n_0,{{\mathbb {1}}}_3 \rangle +\langle n_0\otimes n_0\, \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } ,{{\mathbb {1}}}_3 \rangle )\nonumber \\&\qquad -\frac{\lambda }{2\,\mu \,+\lambda }{\textrm{tr}}( \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } )\underbrace{\langle n_0\otimes n_0,{{\mathbb {1}}}_3 \rangle }_{\langle n_0,n_0 \rangle =1}\Big )^2\nonumber \\&\quad =\Big (\frac{2\,\mu \,}{2\,\mu \,+\lambda }{\textrm{tr}}( \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } )+\frac{(\mu _c\,-\mu \,)}{2(\mu _c\,+\mu \,)}(\langle \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } }^T ,n_0\otimes n_0 \rangle +\langle \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } ,n_0\otimes n_0 \rangle )\Big )^2\nonumber \\&\quad =\frac{4\mu \,^2}{(2\,\mu \,+\lambda )^2}{\textrm{tr}}( \mathcal {E}_{\varphi ^\natural ,\overline{Q}_{e}^{\natural } } )^2. \end{aligned}$$
(A.42)

1.4 Homogenized Quadratic Curvature Energy

The explicit expression of \(\widetilde{W}^{\textrm{hom}}_{\textrm{curv}}(\mathcal {K}_{e,s})\) is announced in this appendix, but its explicit calculation will be provided in a forthcoming paper in which the authors obtained the homogenized curvature energy for the following curvature energy

$$\begin{aligned} W_{\text {curv}}(\Gamma ^\natural )&=\mu L_c^2\Big (b_1\Vert {\textrm{sym}}\Gamma ^\natural \Vert ^2+b_2\,\Vert \mathop {{\textrm{skew}}}\nolimits \Gamma ^\natural \Vert ^2+b_3{\textrm{tr}}(\Gamma ^\natural )^2\Big )\,, \end{aligned}$$
(A.43)

as

$$\begin{aligned} W_{\text {curv}}^{\text {hom}}(\mathcal {K}_{e,s})&=\mu L_c^2\Big (b_1\Vert {\textrm{sym}}\mathcal {K}_{e,s}\Vert ^2+b_2\Vert \mathop {{\textrm{skew}}}\nolimits \mathcal {K}_{e,s}\Vert ^2\nonumber \\&\quad -\frac{(b_1-b_2)^2}{2(b_1+b_2)}\Vert \mathcal {K}_{e,s}^Tn_0\Vert ^2+\frac{b_1b_3}{(b_1+b_3)}{\textrm{tr}}(\mathcal {K}_{e,s})^2\Big )\nonumber \\&=\mu L_c^2\Big (b_1\Vert {\textrm{sym}}\mathcal {K}_{e,s}^\parallel \Vert ^2+b_2\Vert \mathop {{\textrm{skew}}}\nolimits \mathcal {K}_{e,s}^\parallel \Vert ^2-\frac{(b_1-b_2)^2}{2(b_1+b_2)}\Vert \mathcal {K}_{e,s}^Tn_0\Vert ^2\nonumber \\&\quad +\frac{b_1b_3}{(b_1+b_3)}{\textrm{tr}}(\mathcal {K}_{e,s}^\parallel )^2+\frac{b_1+b_2}{2}\Vert \mathcal {K}_{e,s}^Tn_0\Vert \Big )\nonumber \\&=\mu L_c^2\Big (b_1\Vert {\textrm{sym}}\mathcal {K}_{e,s}^\parallel \Vert ^2+b_2\Vert \mathop {{\textrm{skew}}}\nolimits \mathcal {K}_{e,s}^\parallel \Vert ^2+\frac{b_1b_3}{(b_1+b_3)}{\textrm{tr}}(\mathcal {K}_{e,s}^\parallel )^2\nonumber \\&\quad +\frac{2b_1b_2}{b_1+b_2}\Vert \mathcal {K}_{e,s}^\perp \Vert \Big )\,, \end{aligned}$$
(A.44)

where \(\mathcal {K}_{e,s}=(\Gamma _1|\Gamma _2|0)[(\nabla _x\Theta )^\natural ]^{-1}\) with the decomposition

$$\begin{aligned} X=X^\parallel +X^\perp , \qquad \qquad \qquad X^\parallel :=\textrm{A}_{y_0} \,X, \qquad \qquad \qquad X^\perp :=({{\mathbb {1}}}_3-\textrm{A}_{y_0}) \,X, \end{aligned}$$
(A.45)

for every matrix X.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saem, M.M., Ghiba, ID. & Neff, P. A Geometrically Nonlinear Cosserat (Micropolar) Curvy Shell Model Via Gamma Convergence. J Nonlinear Sci 33, 70 (2023). https://doi.org/10.1007/s00332-023-09906-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-023-09906-0

Keywords

Mathematics Subject Classification

Navigation