Skip to main content
Log in

The central vein sign helps in differentiating multiple sclerosis from its mimickers: lessons from Fabry disease

  • Magnetic Resonance
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

Although the use of specific MRI criteria has significantly increased the diagnostic accuracy of multiple sclerosis (MS), reaching a correct neuroradiological diagnosis remains a challenging task, and therefore the search for new imaging biomarkers is crucial.

This study aims to evaluate the incidence of one of the emerging neuroradiological signs highly suggestive of MS, the central vein sign (CVS), using data from Fabry disease (FD) patients as an index of microvascular disorder that could mimic MS.

Methods

In this retrospective study, after the application of inclusion and exclusion criteria, MRI scans of 36 FD patients and 73 relapsing–remitting (RR) MS patients were evaluated. Among the RRMS participants, 32 subjects with a disease duration inferior to 5 years (early MS) were also analyzed. For all subjects, a Fazekas score (FS) was recorded, excluding patients with FS = 0. Different neuroradiological signs, including CVS, were evaluated on FLAIR T2-weighted and spoiled gradient recalled echo sequences.

Results

Among all the recorded neuroradiological signs, the most striking difference was found for the CVS, with a detectable prevalence of 78.1% (57/73) in RRMS and of 71.4% (25/32) in early MS patients, while this sign was absent in FD (0/36).

Conclusions

Our results confirm the high incidence of CVS in MS, also in the early phases of the disease, while it seems to be absent in conditions with a different etiology. These results corroborate the possible role of CVS as a useful neuroradiological sign highly suggestive of MS.

Key Points

The search for new imaging biomarkers is crucial to achieve a correct neuroradiological diagnosis of MS.

The CVS shows an incidence superior to 70% in MS patients, even in the early phases of the disease, while it appears to be absent in FD.

These findings further corroborate the possible future central role of CVS in distinguishing between MS and its mimickers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

APS:

Antiphospholipid syndrome

CVS:

Central vein sign

DMT:

Disease-modifying therapy

EDSS:

Expanded Disability Status Scale

ERT:

Enzymatic replacement therapy

FD:

Fabry disease

FLAIR:

Fluid attenuated inversion recovery

MPRAGE:

Magnetization prepared rapid gradient echo

MS:

Multiple sclerosis

RRMS:

Relapsing-remitting multiple sclerosis

SLE:

Systemic lupus erythematosus

SPGR:

Spoiled gradient recalled echo

WM:

White matter

WMLs:

White matter lesions

References

  1. Aliaga ES, Barkhof F (2014) MRI mimics of multiple sclerosis. Handb Clin Neurol 122:291–316

    Article  PubMed  Google Scholar 

  2. Gelfand JM (2014) Multiple sclerosis: diagnosis, differential diagnosis, and clinical presentation. Handb Clin Neurol 122:269–290

    Article  PubMed  Google Scholar 

  3. Thompson AJ, Banwell BL, Barkhof F et al (2018) Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 17:162–173

    Article  PubMed  Google Scholar 

  4. Solomon AJ, Naismith RT, Cross AH (2019) Misdiagnosis of multiple sclerosis: Impact of the 2017 McDonald criteria on clinical practice. Neurology 92:26–33

    Article  PubMed  PubMed Central  Google Scholar 

  5. Solomon AJ, Pettigrew R, Naismith RT, Chahin S, Krieger S, Weinshenker B (2021) Challenges in multiple sclerosis diagnosis: misunderstanding and misapplication of the McDonald criteria. Mult Scler 27:250–258

    Article  PubMed  Google Scholar 

  6. van der Vuurst de Vries RM, Mescheriakova JY, Wong YYM, et al (2018) Application of the 2017 revised McDonald criteria for multiple sclerosis to patients with a typical clinically isolated syndrome. JAMA Neurol 75:1392–1398

    Article  Google Scholar 

  7. Absinta M, Rocca MA, Colombo B et al (2012) Patients with migraine do not have MRI-visible cortical lesions. J Neurol 259:2695–2698

    Article  PubMed  Google Scholar 

  8. Arrambide G, Tintore M, Auger C et al (2017) Lesion topographies in multiple sclerosis diagnosis: a reappraisal. Neurology 89:2351–2356

    Article  PubMed  PubMed Central  Google Scholar 

  9. Calabrese M, Oh MS, Favaretto A et al (2012) No MRI evidence of cortical lesions in neuromyelitis optica. Neurology 79:1671–1676

    Article  PubMed  Google Scholar 

  10. Kim SS, Richman DP, Johnson WO, Hald JK, Agius MA (2014) Limited utility of current MRI criteria for distinguishing multiple sclerosis from common mimickers: primary and secondary CNS vasculitis, lupus and Sjogren’s syndrome. Mult Scler 20:57–63

    Article  PubMed  Google Scholar 

  11. Lapucci C, Saitta L, Bommarito G et al (2019) How much do periventricular lesions assist in distinguishing migraine with aura from CIS? Neurology 92:e1739–e1744

    Article  PubMed  Google Scholar 

  12. Sinnecker T, Clarke MA, Meier D et al (2019) Evaluation of the central vein sign as a diagnostic imaging biomarker in multiple sclerosis. JAMA Neurol 76:1446–1456

    Article  PubMed  Google Scholar 

  13. Maggi P, Absinta M, Grammatico M et al (2018) Central vein sign differentiates Multiple Sclerosis from central nervous system inflammatory vasculopathies. Ann Neurol 83:283–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Charcot JM (1868) Histology of “sclerose en plaque.” Gazette Hosp (Paris) 41:554–566

    Google Scholar 

  15. Ge Y, Law M, Herbert J, Grossman RI (2005) Prominent perivenular spaces in multiple sclerosis as a sign of perivascular inflammation in primary demyelination. AJNR Am J Neuroradiol 26:2316–2319

    PubMed  PubMed Central  Google Scholar 

  16. Tallantyre EC, Brookes MJ, Dixon JE, Morgan PS, Evangelou N, Morris PG (2008) Demonstrating the perivascular distribution of MS lesions in vivo with 7-Tesla MRI. Neurology 70:2076–2078

    Article  CAS  PubMed  Google Scholar 

  17. Clarke MA, Pareto D, Pessini-Ferreira L et al (2020) Value of 3T susceptibility-weighted imaging in the diagnosis of multiple sclerosis. AJNR Am J Neuroradiol 41:1001–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Absinta M, Sati P, Schindler M et al (2016) Persistent 7-tesla phase rim predicts poor outcome in new multiple sclerosis patient lesions. J Clin Invest 126:2597–2609

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dal-Bianco A, Grabner G, Kronnerwetter C et al (2017) Slow expansion of multiple sclerosis iron rim lesions: pathology and 7 T magnetic resonance imaging. Acta Neuropathol 133:25–42

    Article  CAS  PubMed  Google Scholar 

  20. Metz I, Gavrilova RH, Weigand SD et al (2021) MRI correlates of multiple sclerosis immunopathological patterns. Ann Neurol. https://doi.org/10.1002/ana.26163

    Article  PubMed  Google Scholar 

  21. Elliott C, Wolinsky JS, Hauser SL et al (2019) Slowly expanding/evolving lesions as a magnetic resonance imaging marker of chronic active multiple sclerosis lesions. Mult Scler 25:1915–1925

    Article  PubMed  Google Scholar 

  22. Harrison DM, Li X, Liu H et al (2016) Lesion heterogeneity on high-field susceptibility MRI is associated with multiple sclerosis severity. AJNR Am J Neuroradiol 37:1447–1453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Absinta M, Sati P, Masuzzo F et al (2019) Association of chronic active multiple sclerosis lesions with disability in vivo. JAMA Neurol 76:1474–1483

    Article  PubMed  PubMed Central  Google Scholar 

  24. Elliott C, Belachew S, Wolinsky JS et al (2019) Chronic white matter lesion activity predicts clinical progression in primary progressive multiple sclerosis. Brain 142:2787–2799

    Article  PubMed  PubMed Central  Google Scholar 

  25. Reich DS, Arnold DL, Vermersch P et al (2021) Safety and efficacy of tolebrutinib, an oral brain-penetrant BTK inhibitor, in relapsing multiple sclerosis: a phase 2b, randomised, double-blind, placebo-controlled trial. Lancet Neurol 20:729–738

    Article  CAS  PubMed  Google Scholar 

  26. Germain DP (2010) Fabry disease. Orphanet J Rare Dis 5:30

    Article  PubMed  PubMed Central  Google Scholar 

  27. Cocozza S, Olivo G, Riccio E et al (2017) Corpus callosum involvement: a useful clue for differentiating Fabry disease from multiple sclerosis. Neuroradiology 59:563–570

    Article  PubMed  Google Scholar 

  28. Ugga L, Cocozza S, Pontillo G et al (2018) Absence of infratentorial lesions in Fabry disease contributes to differential diagnosis with multiple sclerosis. Brain Behav 8:e01121

    Article  PubMed  PubMed Central  Google Scholar 

  29. Böttcher T, Rolfs A, Tanislav C et al (2013) Fabry disease - underestimated in the differential diagnosis of multiple sclerosis? PLoS One 8:e71894

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Saip S, Uluduz D, Erkol G (2007) Fabry disease mimicking multiple sclerosis. Clin Neurol Neurosurg 109:361–363

    Article  PubMed  Google Scholar 

  31. Colomba P, Zizzo C, Alessandro R et al (2018) Fabry disease and multiple sclerosis misdiagnosis: the role of family history and neurological signs. Oncotarget 9:7758–7762

    Article  PubMed  PubMed Central  Google Scholar 

  32. Shribman SE, Shah AR, Werring DJ, Cockerell OC (2015) Fabry disease mimicking multiple sclerosis: lessons from two case reports. Mult Scler Relat Disord 4:170–175

    Article  CAS  PubMed  Google Scholar 

  33. Cennamo G, Di Maio LG, Montorio D et al (2019) Optical coherence tomography angiography findings in Fabry disease. J Clin Med 8(4):528

  34. Polman CH, Reingold SC, Banwell B et al (2011) Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 69:292–302

    Article  PubMed  PubMed Central  Google Scholar 

  35. Thompson AJ, Baranzini SE, Geurts J, Hemmer B, Ciccarelli O (2018) Multiple sclerosis. Lancet 391:1622–1636

    Article  PubMed  Google Scholar 

  36. Lublin FD, Reingold SC, Cohen JA et al (2014) Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology 83:278–286

    Article  PubMed  PubMed Central  Google Scholar 

  37. Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA (1987) MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am J Roentgenol 149:351–356

    Article  CAS  PubMed  Google Scholar 

  38. Fazekas F, Enzinger C, Schmidt R et al (2015) Brain magnetic resonance imaging findings fail to suspect Fabry disease in young patients with an acute cerebrovascular event. Stroke 46:1548–1553

    Article  PubMed  Google Scholar 

  39. Esposito R, Russo C, Santoro C et al (2020) Association between left atrial deformation and brain involvement in patients with Anderson-Fabry disease at diagnosis. J Clin Med 9(9):2741

  40. Mistry N, Abdel-Fahim R, Samaraweera A et al (2016) Imaging central veins in brain lesions with 3-T T2*-weighted magnetic resonance imaging differentiates multiple sclerosis from microangiopathic brain lesions. Mult Scler 22:1289–1296

    Article  PubMed  Google Scholar 

  41. Adams CW, Poston RN, Buk SJ, Sidhu YS, Vipond H (1985) Inflammatory vasculitis in multiple sclerosis. J Neurol Sci 69:269–283

    Article  CAS  PubMed  Google Scholar 

  42. Dawson JW (1916) The histology of disseminated sclerosis. Edinb Med J 17:229–241

    PubMed Central  Google Scholar 

  43. Gaitán MI, Maggi P, Wohler J et al (2014) Perivenular brain lesions in a primate multiple sclerosis model at 7-tesla magnetic resonance imaging. Mult Scler 20:64–71

    Article  PubMed  Google Scholar 

  44. Filippi M, Bar-Or A, Piehl F et al (2018) Multiple sclerosis Nat Rev Dis Primers 4:43

    Article  PubMed  Google Scholar 

  45. Cocozza S, Russo C, Pontillo G, Pisani A, Brunetti A (2018) Neuroimaging in Fabry disease: current knowledge and future directions. Insights Imaging 9:1077–1088

    Article  PubMed  PubMed Central  Google Scholar 

  46. Solomon AJ, Weinshenker BG (2013) Misdiagnosis of multiple sclerosis: frequency, causes, effects, and prevention. Curr Neurol Neurosci Rep 13:403

    Article  PubMed  CAS  Google Scholar 

  47. Hametner S, Wimmer I, Haider L, Pfeifenbring S, Brück W, Lassmann H (2013) Iron and neurodegeneration in the multiple sclerosis brain. Ann Neurol 74:848–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sati P, Oh J, Constable RT et al (2016) The central vein sign and its clinical evaluation for the diagnosis of multiple sclerosis: a consensus statement from the North American Imaging in Multiple Sclerosis Cooperative. Nat Rev Neurol 12:714–722

    Article  PubMed  Google Scholar 

  49. Albrecht J, Dellani PR, Müller MJ et al (2007) Voxel based analyses of diffusion tensor imaging in Fabry disease. J Neurol Neurosurg Psychiatry 78:964–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Enzinger C, Barkhof F, Ciccarelli O et al (2015) Nonconventional MRI and microstructural cerebral changes in multiple sclerosis. Nat Rev Neurol 11:676–686

    Article  PubMed  Google Scholar 

  51. Fellgiebel A, Mazanek M, Whybra C et al (2006) Pattern of microstructural brain tissue alterations in Fabry disease: a diffusion-tensor imaging study. J Neurol 253:780–787

    Article  PubMed  Google Scholar 

  52. Pontillo G, Cocozza S, Lanzillo R et al (2019) Determinants of deep gray matter atrophy in multiple sclerosis: a multimodal MRI study. AJNR Am J Neuroradiol 40:99–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schiavi S, Petracca M, Sun P et al (2021) Non-invasive quantification of inflammation, axonal and myelin injury in multiple sclerosis. Brain 144:213–223

    Article  PubMed  Google Scholar 

  54. Paavilainen T, Lepomäki V, Saunavaara J et al (2013) Diffusion tensor imaging and brain volumetry in Fabry disease patients. Neuroradiology 55:551–558

    Article  PubMed  Google Scholar 

  55. Sbardella E, Tona F, Petsas N, Pantano P (2013) DTI Measurements in multiple sclerosis: evaluation of brain damage and clinical implications. Mult Scler Int 2013:671730

    PubMed  PubMed Central  Google Scholar 

  56. Dineen RA, Vilisaar J, Hlinka J et al (2009) Disconnection as a mechanism for cognitive dysfunction in multiple sclerosis. Brain 132:239–249

    Article  CAS  PubMed  Google Scholar 

  57. Petracca M, Schiavi S, Battocchio M et al (2020) Streamline density and lesion volume reveal a postero-anterior gradient of corpus callosum damage in multiple sclerosis. Eur J Neurol 27:1076–1082

    Article  CAS  PubMed  Google Scholar 

  58. Roosendaal SD, Geurts JJ, Vrenken H et al (2009) Regional DTI differences in multiple sclerosis patients. Neuroimage 44:1397–1403

    Article  CAS  PubMed  Google Scholar 

  59. Cocozza S, Pontillo G, Quarantelli M et al (2018) Default mode network modifications in Fabry disease: a resting-state fMRI study with structural correlations. Hum Brain Mapp 39:1755–1764

    Article  PubMed  PubMed Central  Google Scholar 

  60. Cocozza S, Schiavi S, Pontillo G et al (2020) Microstructural damage of the cortico-striatal and thalamo-cortical fibers in Fabry disease: a diffusion MRI tractometry study. Neuroradiology 62:1459–1466

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ulivi L, Kanber B, Prados F et al (2020) White matter integrity correlates with cognition and disease severity in Fabry disease. Brain 143:3331–3342

    Article  PubMed  Google Scholar 

  62. Inglese M, Petracca M (2018) MRI in multiple sclerosis: clinical and research update. Curr Opin Neurol 31:249–255

    Article  PubMed  Google Scholar 

  63. Wattjes MP, Ciccarelli O, Reich DS et al (2021) 2021 MAGNIMS-CMSC-NAIMS consensus recommendations on the use of MRI in patients with multiple sclerosis. Lancet Neurol 20:653–670

    Article  PubMed  Google Scholar 

  64. Calvi A, Haider L, Prados F, Tur C, Chard D, Barkhof F (2020) In vivo imaging of chronic active lesions in multiple sclerosis. Mult Scler 23;1352458520958589

  65. Samaraweera AP, Clarke MA, Whitehead A et al (2017) The central vein sign in multiple sclerosis lesions is present irrespective of the T2* sequence at 3 T. J Neuroimaging 27:114–121

    Article  PubMed  Google Scholar 

Download references

Funding

The authors state that this work has not received any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Pontillo.

Ethics declarations

Guarantor

The scientific guarantor of this publication is S.C.

Conflict of interest

S.C. received speaker fees from Sanofi and Amicus Therapeutics and a Research Grant from FISM (Fondazione Italiana Sclerosi Multipla).

The remaining authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Statistics and biometry

One of the authors (S.C.) has significant statistical expertise.

Informed consent

Written informed consent was obtained from all subjects (patients) in this study.

Ethical approval

Institutional Review Board approval was obtained.

Methodology

• retrospective

• observational

• performed at one institution

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tranfa, M., Tortora, M., Pontillo, G. et al. The central vein sign helps in differentiating multiple sclerosis from its mimickers: lessons from Fabry disease. Eur Radiol 32, 3846–3854 (2022). https://doi.org/10.1007/s00330-021-08487-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-021-08487-4

Keywords

Navigation