Skip to main content
Log in

Two pathways of 2n gamete formation and differences in the frequencies of 2n gametes between wild species and interspecific hybrids

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Epidendrum produces 2 n gametes with high frequency. This paper is the first to report on multiple pathways for forming 2 n gametes, meiotic defeats, and pre-meiotic chromosome doubling.

Abstract

Unreduced 2n reproductive cells are predominantly involved in pathways that lead to polyploid plants. Although one of the most common pathways for inducing 2n gametes is through meiotic defects, a small set of isolated species alternatively generates 2n gametes from tetraploid pollen mother cells in the pre-meiotic phase. Hence, determining the mechanisms underlying 2n gamete formation is critical to improving breeding programmes and understanding plant evolution. We investigated sporads to reveal the pathway(s) accounting for the formation and frequencies of 2n gametes in wild species and interspecific hybrids in the genus Epidendrum. We investigated different types of sporads with varying frequencies, sizes, and viability in the wild species and hybrids of the genus Epidendrum. Large tetrad-estimated pre-meiotic chromosome doubling was observed in wild species. The Epidendrum is unique in that it forms 2n pollens via two pathways, namely, meiotic defects and pre-meiotic chromosome doubling. These two pathways of 2n pollen formation could influence the high diversity generation of polyploidy with different degrees of heterozygosity and genetic backgrounds in the genus Epidendrum. Therefore, these findings are proposed to influence polyploid breeding of Epidendrum via 2n pollen, helping us understand evolution and speciation via unreduced 2n gamete formation in Orchidaceae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article and its supplementary information files.

References

  • Alix K, Gérard PR, Schwarzacher T, Heslop-Harrison JSP (2017) Polyploidy and interspecific hybridization: partners for adaptation, speciation and evolution in plants. Ann Bot 120:183–194

    Article  PubMed Central  PubMed  Google Scholar 

  • Aoyama M, Kojima K, Kobayashi M (1994) Morphology of microspore in Phalaenopsis F1 hybrids. Kinki Chugoku Agric Res 88:49–53 (in Japanese)

    Google Scholar 

  • Assis FNM, Souza BCQ, Medeiros-Neto E, Pinheiro F, Silva AE, Felix LP (2013) Karyology of the genus Epidendrum (Orchidaceae: Laeliinae) with emphasis on subgenus Amphiglottium and chromosome number variability in Epidendrum secundum. Bot J Linn Soc 172:329–344

    Article  Google Scholar 

  • Barba-Gonzalez R, Lokker AC, Lim K-B, Ramanna MS, Van Tuyl JM (2004) Use of 2n gametes for the production of sexual polyploids from sterile oriental × asiatic hybrids of lilies (Lilium). Theor Appl Genet 109:1125–1132

    Article  CAS  PubMed  Google Scholar 

  • Bino RJ, Van Tuyl JM, De Vries JN (1990) Flow cytometric determination of relative nuclear DNA contents in bicellulate and tricellulate pollen. Ann Bot 65:3–8

    Article  CAS  Google Scholar 

  • Bolaños-Villegas P, Chin SW, Chen FC (2008) Meiotic chromosome behavior and capsule setting in Doritaenopsis hybrids. J Am Soc Hortc Sci 133:107–116

    Article  Google Scholar 

  • Brewbaker JL, Kwack BH (1963) The essential role of calcium ion in pollen germination and pollen tube growth. Am J Bot 50:859–865

    Article  CAS  Google Scholar 

  • Brownfield L, Köhler C (2011) Unreduced gamete formation in plants: mechanisms and prospects. J Exp Bot 62:1659–1668

    Article  CAS  PubMed  Google Scholar 

  • Chase MW (2005) Classification of Orchidaceae in the age of DNA data. Curtis’s Bot Mag 22:2–7

    Article  Google Scholar 

  • Chung MY, Chung JD, Ramanna M, van Tuyl JM, Lim KB (2013) Production of polyploids and unreduced gametes in Lilium auratum × L. henryi hybrid. Int J Biol Sci 9:693–701

    Article  PubMed Central  PubMed  Google Scholar 

  • Crespel L, Gudin S (2003) Evidence for the production of unreduced gametes by tetraploid Rosa hybrida L. Euphyitica 133:65–69

    Article  CAS  Google Scholar 

  • Crespel L, Ricci SC, Gudin S (2006) The production of 2n-pollen in rose. Euphytica 151:155–164

    Article  Google Scholar 

  • De Storme N, Geelen D (2013a) Sexual polyploidization in plants—cytological mechanisms and molecular regulation. New Phytol 198:670–684

    Article  PubMed Central  PubMed  Google Scholar 

  • De Storme N, Geelen D (2013b) Pre-meiotic endomitosis in the cytokinesis-defective tomato mutant pmcd1 generates tetraploid meiocytes and diploid gametes. J Exp Bot 64:2345–2358

    Article  PubMed  Google Scholar 

  • d’Erfurth I, Jolivet S, Froger N, Catrice O, Novatchkova M, Simon M, Jenczewski E, Mercier R (2008) Mutations in AtPS1 (Arabidopsis thaliana parallel spindle 1) lead to the production of diploid pollen grains. PLoS Genet 4:e1000274

    Article  PubMed Central  PubMed  Google Scholar 

  • Dewitte A, Eeckhaut T, Van Huylenbroeck J, Van Bockstaele E (2009) Occurrence of viable unreduced pollen in a Begonia collection. Euphytica 168:81–94

    Article  Google Scholar 

  • Dweikat IM, Lyrene PM (1988) Production and viability of unreduced gametes in triploid interspecific blueberry hybrids. Theor Appl Genet 76:555–559

    Article  CAS  PubMed  Google Scholar 

  • Fakhri Z, Mirzaghaderi G, Ahmadian S, Mason AS (2016) Unreduced gamete formation in wheat × Aegilops spp. hybrids is genotype specific and prevented by shared homologous subgenomes. Plant Cell Rep 35:1143–1154

    Article  CAS  PubMed  Google Scholar 

  • Fernandez A, Neffa VGS (2004) Genomic relationships between Turnera krapovickasii (2x, 4x) and T. ulmifolia (6x) (Turneraceae, Turnera). Caryologia 57:45–51

    Article  Google Scholar 

  • Fukai S, Hasegawa A, Goi M (2002) Polysomaty in Cymbidium. HortScience 37:1088–1091

    Article  Google Scholar 

  • Givnish TJ, Spalink D, Ames M et al (2015) Orchid phylogenomics and multiple drivers of their extraordinary diversification. In: proceedings biological sciences the royal society. Proc R Soc B 282:20151553

    Article  PubMed Central  PubMed  Google Scholar 

  • Hlaing TS, Kondo H, Deguchi A, Miyoshi K (2020) The efficient induction of tetraploid plants via adventitious shoots in Antirrhinum majus L. by in vitro seed treatment with amiprophos-methyl. Plant Cell Tiss Org 142:157–166

    Article  CAS  Google Scholar 

  • Katsiotis A, Forsberg RA (1995) Discovery of 2n gametes in tetraploid oat Avena vaviloviana. Euphytica 81:1–6

    Article  Google Scholar 

  • Kondo H, Phlaetita W, Mii M, Kikuchi S, Deguchi A, Miyoshi K (2020) Efficient chromosome doubling of an interspecific hybrid Dendrobium Stardust ‘Fire Bird’ by treatment of amiprofos- methyl to protocorm like body. In Vitro Cell Dev-Pl 56:738–749

    Article  CAS  Google Scholar 

  • Kondo H, Kikuchi S, Deguchi A, Miyoshi K (2021) New information of wild species and cultivars in the genus Epidendrum (Orchidaceae). Cytologia 86–1:61–65

    Article  Google Scholar 

  • Kreiner JM, Kron P, Husband BC (2017a) Frequency and maintenance of unreduced gametes in natural plant populations: associations with reproductive mode, life history and genome size. New Phytol 214:879–889

    Article  CAS  PubMed  Google Scholar 

  • Kreiner JM, Kron P, Husband BC (2017b) Evolutionary dynamics of unreduced gametes. Trends Genet 33:583–593

    Article  CAS  PubMed  Google Scholar 

  • Laere KV, Angelo D, Johan VH, Erik VB (2009) Evidence for the occurrence of unreduced gametes in interspecific hybrids of Hibiscus. J Hortic Sci 84:240–247

    Google Scholar 

  • Laskowska D, Berbeć A, Van Laere K, Kirov I, Czubacka A, Trojak-Goluch A (2015) Cytology and fertility of amphidiploid hybrids between Nicotiana wuttkei Clarkson et Symon and N. tabacum L. Euphytica 206:597–608

    Article  CAS  Google Scholar 

  • Lee YI, Chang FC, Chung MC (2011) Chromosome pairing affinities in interspecific hybrids reflect phylogenetic distances among lady’s slipper orchids (Paphiopedilum). Ann Bot 108:113–121

    Article  PubMed Central  PubMed  Google Scholar 

  • Leflon M, Eber F, Letanneur JC, Chelysheva L, Coriton O, Huteau V, Ryder CD, Barker G, Jenczewski E, Chèvre AM (2006) Pairing and recombination at meiosis of Brassica rapa (AA) × Brassica napus (AACC) hybrids. Theor Appl Genet 113:1467–1480

    Article  CAS  PubMed  Google Scholar 

  • Leitch IJ, Bennett MD (1997) Polyploidy in angiosperms. Trends Plant Sci 2:470–476

    Article  Google Scholar 

  • Liesebach H, Ulrich K, Ewald D (2015) FDR and SDR processes in meiosis and diploid gamete formation in poplars (Populus L.) detected by centromere-associated microsatellite markers. Tree Genet Genomes 11:801

    Article  Google Scholar 

  • Lim KB, Ramanna MS, Jacobsen E, Van Tuyl JM (2003) Evaluation of BC2 progenies derived from 3x–2x and 3x–4x crosses of Lilium: a GISH analysis. Theor Appl Genet 106:568–574

    Article  PubMed  Google Scholar 

  • Lindsay GC, Hopping ME, O’Brien IEW (1994) Detection of protoplast-derived DNA tetraploid Lisianthus (Eustoma grandiflorum) by leaf and flower characteristics and by flow cytometry. Plant Cell Tiss Org 38:53–55

    Article  Google Scholar 

  • Loginova DB, Silkova OG (2017) Mechanisms of unreduced gamete formation in flowering plant. Russ J Genet 53:741–756

    Article  CAS  Google Scholar 

  • Mai Y, Li H, Suo Y et al (2019) High temperature treatment generates unreduced pollen in persimmon (Diospyros kaki Thunb). Sci Hortic 258:108774

    Article  CAS  Google Scholar 

  • Marques I, Draper D, Riofrío L, Naranjo C (2014) Multiple hybridization events, polyploidy and low postmating isolation entangle the evolution of neotropical species of Epidendrum (Orchidaceae). BMC Ecol Evol 14:20

    Google Scholar 

  • Mason AS, Nelson MN, Castello M-C, Yan G, Cowling WA (2011) Production of viable male unreduced gametes in Brassica interspecific hybrids is genotype specific and stimulated by cold temperatures. Plant Biol 11:103

    CAS  Google Scholar 

  • Miyoshi K, Mii M (1998) Stimulatory effects of sodium and calcium hypochlorite, pre-chilling and cytokinins on the germination of Cypripedium macranthos seed in vitro. Physiol Plant 102:481–486

    Article  CAS  Google Scholar 

  • Moraes AP, Chinaglia M, Palma-Silva C, Pinheiro F (2013) Interploidy hybridization in sympatric zones: the formation of Epidendrum fulgens × E. puniceoluteum hybrids (Epidendroideae, Orchidaceae). Ecol Evol 3:3824–3837

    Article  PubMed Central  PubMed  Google Scholar 

  • Nakano A, Mii M, Hoshino Y (2021) Simultaneous production of trploid and hexaploidy plants by endosperm culture with colchicine treatment in diploid Haemanthus albiflos. Plant Cell Tiss Org 144:661–669

    Article  CAS  Google Scholar 

  • Nikoloudakis N, Aissat A, Katsiotis A (2018) Screening A. ventricosa populations for 2n gametes. Euphytica 214:34–43

    Article  Google Scholar 

  • Nimura M, Kato J, Horaguchi H, Mii M, Sakai K, Katoh T (2006) Induction of fertile amphidiploids by artificial chromosome-doubling in interspecific hybrid between Dianthus caryophyllus L. and D. japonicus Thunb. Breeding Sci 56:303–310

    Article  Google Scholar 

  • Nimura M, Kato J, Mii M, Ohishi K (2008) Cross-compatibility and the polyploidy of progenies in reciprocal backcrosses between diploid carnation (Dianthus caryophyllus L.) and its amphidiploid with Dianthus japonicus Thunb. Sci Horti 115:183–189

    Article  Google Scholar 

  • Pacini E, Hesse M (2002) Types of pollen dispersing units in orchids, and their consequences for germination and fertilization. Ann Bot 89:653–664

    Article  PubMed Central  PubMed  Google Scholar 

  • Pinheiro F, Koehler S, Corrêa AM, Salatino MLF, Salatino A, Barros F (2009) Phylogenetic relationships and infrageneric classification of Epidendrum subgenus Amphiglottium (Laeliinae, Orchidaceae). Plant Syst Evol 283:165–177

    Article  Google Scholar 

  • Pridgeon AM, Cribb PJ, Chase JM, Rasmussen FN (2005) Genera orchidacearum. Epidendroideae (part 4). Oxford University Press, Oxford

    Google Scholar 

  • Ramanna MS, Jacobsen E (2003) Relevance of sexual polyploidization for crop improvement. Euphytica 113:3–18

    Article  Google Scholar 

  • Ramsey J (2007) Unreduced gametes and neopolyploids in natural populations of Achillea borealis (Asteraceae). Heredity 98:143–150

    Article  CAS  PubMed  Google Scholar 

  • Rouiss H, Cuenca J, Navarro L, Ollitrault P, Aleza P (2017) Tetraploid citrus progenies arising from FDR and SDR unreduced pollen in 4x × 2x hybridizations. Tree Genet Genomes 13:10

    Article  Google Scholar 

  • Sattler MC, Carvalho CR, Clarindo WR (2016) The polyploidy and its key role in plant breeding. Planta 243:281–296

    Article  CAS  PubMed  Google Scholar 

  • Soltis DE, Soltis PS (1999) Polyploidy: recurrent formation and genome evolution. Trends Ecol Evol 14:348–352

    Article  CAS  PubMed  Google Scholar 

  • Soltis PS, Marchant DB, Van de Peer Y, Soltis DE (2015) Polyploidy and genome evolution in plants. Curr Opin Genet Dev 35:119–125

    Article  CAS  PubMed  Google Scholar 

  • Sora D, Kron P, Husband BC (2016) Genetic and environmental determinants of unreduced gamete production in Brassica napus, Sinapis arvensis and their hybrids. Heredity 117:440–448

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Takamura T, Miyajima I (1996) Colchicine induced tetraploids in yellow-flowered cyclamens and their characteristics. Sci Hortic 65:305–312

    Article  CAS  Google Scholar 

  • Tokuhara K, Mii M (1993) Micropropagation of Phalaenopsis and Doritaenopsis by culturing shoot tips of flower stalk buds. Plant Cell Rep 13:7–11

    Article  CAS  PubMed  Google Scholar 

  • Travnicek P, Ponert J, Urfus T et al (2015) Challenges of flow-cytometric estimation of nuclear genome size in orchids, a plant group with both whole-genome and progressively partial endoreplication. Cytom Part A 87:958–966

    Article  CAS  Google Scholar 

  • Vendrame WA, Carvalho VS, Dias JMM (2007) In vitro germination and seedling development of cryopreserved Dendrobium hybrid mature seeds. Sci Hortic 114:188–193

    Article  CAS  Google Scholar 

  • Yeung EC (1987) Mechanisms of pollen aggregation into pollinia in Epidendrum ibaguense (Orchidaceae). Grana 26:47–52

    Article  Google Scholar 

  • Zaitlin D, Pierce AJ (2010) Nuclear DNA content in Sinningia (Gesneriaceae); intraspecific genome size variation and genome characterization in S. speciosa. Genome 53:1066–1082

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Cao Q, Jia G (2017) A protocol for fertility restoration of F1 hybrid derived from Lilium ×formolongi ‘Raizan 3’ × Oriental hybrid ‘Sorbonne.’ Plant Cell Tiss Org 129:375–386

    Article  Google Scholar 

  • Zhao H, Bughrara SS, Wang Y (2007) Cytology and pollen grain fertility in creeping bentgrass interspecific and intergeneric hybrids. Euphytica 156:227–235

    Article  Google Scholar 

  • Zhou X, Mo X, Gui M et al (2015) Cytological, molecular mechanisms and temperature stress regulating production of diploid male gametes in Dianthus caryophyllus L. Plant Physiol Bioch 97:255–263

    Article  CAS  Google Scholar 

Download references

Funding

KAKENHI 21J11832 and the Okinawa Churashima Foundation supported this work.

Author information

Authors and Affiliations

Authors

Contributions

HK: analysed the data, HK and KM: planned and designed the research, and then AD and SK: assisted with the experimental design and drafting the manuscript.

Corresponding author

Correspondence to Kazumitsu Miyoshi.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare relevant to this article’s content.

Additional information

Communicated by Sukhpreet Sandhu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTM 1383 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondo, H., Deguchi, A., Kikuchi, S. et al. Two pathways of 2n gamete formation and differences in the frequencies of 2n gametes between wild species and interspecific hybrids. Plant Cell Rep 41, 2187–2200 (2022). https://doi.org/10.1007/s00299-022-02915-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-022-02915-5

Keywords

Navigation