Skip to main content
Log in

FDR and SDR processes in meiosis and diploid gamete formation in poplars (Populus L.) detected by centromere-associated microsatellite markers

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Sexual polyploidisation is one of the appropriate approaches in poplar breeding. Controlled pollinations were carried out with spontaneously formed, as well as induced, 2n gametes. Among the offspring individuals, 36 triploid plants and 1 tetraploid individual were detected by flow cytometry. The parental clones and all polyploid offspring individuals were genotyped by 18 nuclear microsatellite markers. The allelic configurations, especially tri-allelic patterns, and dosage effects were used to recognise diploid contributions of the male or female gamete. Three out of 18 markers localised near the centromeres of linkage groups I, X and XV. They are assumed to be unaffected by crossing over events and, therefore, able to ascertain the mechanism of first division restitution (FDR) or second division restitution (SDR) to generate diploid gametes. The applied three unlinked centromere-associated microsatellite markers allow a very effective determination of FDR resp. SDR processes. Altogether, 21 diploid pollen (10 FDR and 11 SDR) and 13 diploid ovules (1 FDR and 12 SDR) as well as 2 cases of postmeiotic reconstitution were determined with no inconsistency for the three markers. A female hybrid aspen clone (Populus tremula × Populus tremuloides) was assured to be able to frequently spontaneously form diploid ovules by the SDR mechanism. The transferred average heterozygosity in FDR gametes was assessed to be remarkably higher than that in SDR gametes. However, a selective inducement to favour FDR gametes seems not to be feasible with the current thermo-treatment techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bradshaw HD, Stettler RF (1993) Molecular genetics of growth and development in Populus. I. Triploidy in hybrid poplars. Theor Appl Genet 86:301–307. doi:10.1007/bf00222092

    PubMed  Google Scholar 

  • Brownfield L, Köhler C (2011) Unreduced gamete formation in plants: mechanisms and prospects. J Exp Bot 62:1659–1668. doi:10.1093/jxb/erq371

    Article  CAS  PubMed  Google Scholar 

  • Cai X, Xu SS (2007) Meiosis-driven genome variation in plants. Curr Genom 8:151–161

    Article  CAS  Google Scholar 

  • Cuenca J, Froelicher Y, Aleza P, Juarez J, Navarro L, Ollitrault P (2011) Multilocus half-tetrad analysis and centromere mapping in citrus: evidence of SDR mechanism for 2n megagametophyte production and partial chiasma interference in mandarin cv ‘Fortune’. Heredity 107:462–470. doi:10.1038/hdy.2011.33

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • De Storme N, Geelen D (2013) Sexual polyploidization in plants—cytological mechanisms and molecular regulation. New Phytol 198:670–684. doi:10.1111/nph.12184

    Article  PubMed Central  PubMed  Google Scholar 

  • De Storme N, Copenhaver GP, Geelen D (2012) Production of diploid male gametes in Arabidopsis by cold-induced destabilization of postmeiotic radial microtubule arrays. Plant Physiol 160:1808–1826. doi:10.1104/pp. 112.208611

    Article  PubMed Central  PubMed  Google Scholar 

  • Dewitte A, Van Laere K, Van Huylenbroeck J (2012) Use of 2n gametes in plant breeding. In: Abdurakhmonov IY (ed) Plant breeding. Agricultural and Biological Sciences. pp 59–86. doi: 10.5772/29827

  • Dong C-B, Suo Y-J, Kang X-Y (2014) Assessment of the genetic composition of triploid hybrid Populus using SSR markers with low recombination frequencies. Can J Forest Res:692–699 doi: 10.1139/cjfr-2013-0360

  • Dumolin S, Demesure B, Petit RJ (1995) Inheritance of chloroplast and mitochondrial genomes in pedunculate oak investigated with an efficient PCR method. Theor Appl Genet 91:1253–1256. doi:10.1007/BF00220937

    Article  CAS  PubMed  Google Scholar 

  • Esselink GD, Nybom H, Vosman B (2004) Assignment of allelic configuration in polyploids using the MAC-PR (microsatellite DNA allele counting—peak ratios) method. Theor Appl Genet 109:402–408. doi:10.1007/s00122-004-1645-5

    Article  CAS  PubMed  Google Scholar 

  • Ewald D, Ulrich K (2012) In vitro pollination in poplar of section Populus. Plant Cell Tiss Organ Cult 111:255–258. doi:10.1007/s11240-012-0189-7

    Article  Google Scholar 

  • Ewald D, Ulrich K, Naujoks G, Schröder MB (2009) Induction of tetraploid poplar and black locust plants using colchicine: chloroplast number as an early marker for selecting polyploids in vitro. Plant Cell Tiss Organ Cult 99:353–357. doi:10.1007/s11240-009-9601-3

    Article  Google Scholar 

  • Ewald D, Ulrich K, Liesebach H (2012) Erzeugung triploider Individuen und intersektioneller Hybriden bei verschiedenen Pappelarten. In: Züchtung und Ertragsleistung schnellwachsender Baumarten im Kurzumtrieb - Erkenntnisse aus drei Jahren FastWOOD, ProLoc und Weidenzüchtung, Hann. Münden. Beiträge aus der Nordwestdeutschen Forstlichen Versuchsanstalt, pp 183–193

  • Ferrante S, Lucretti S, Reale S, Patrizio A, Abbate L, Tusa N, Scarano M-T (2010) Assessment of the origin of new citrus tetraploid hybrids (2n =4x) by means of SSR markers and PCR based dosage effects. Euphytica 173:223–233. doi:10.1007/s10681-009-0093-3

    Article  CAS  Google Scholar 

  • Jackson N, Sanchez-Moran E, Buckling E, Armstrong SJ, Jones GH, Franklin FCH (2006) Reduced meiotic crossovers and delayed prophase I progression in AtMLH3-deficient Arabidopsis. EMBO J 25:1315–1323. doi:10.1038/sj.emboj.7600992

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Johnsson H (1945) The triploid progeny of the cross diploid x tetraploid Populus tremula. Hereditas 31:411–440. doi:10.1111/j.1601-5223.1945.tb02761.x

    Article  CAS  PubMed  Google Scholar 

  • Johnsson H, Eklundh C (1940) Colchicine treatment as a method in breeding hardwood species. Svensk Papperstidning 43:337–373

    Google Scholar 

  • Kang X-Y, Zhu Z-T, Zhang Z-Y (2000) Breeding of triploids by the reciprocal crossing of Populus alba × P. glandulosa and P. tomentosa × P. bolleana. J Beijing For Univ 22:8–11

    Google Scholar 

  • Kohl KP, Sekelsky J (2013) Meiotic and mitotic recombination in meiosis. Genetics 194:327–334. doi:10.1534/genetics.113.150581

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li YH, Kang X-Y, Wang SD, Zhang ZH, Chen HW (2008) Triploid induction in Populus alba × P. glandulosa by chromosome doubling of female gametes. Silv Genet 57:37–40

    Google Scholar 

  • Liesebach H, Schneck V, Ewald E (2010) Clonal fingerprinting in the genus Populus L. by nuclear microsatellite loci regarding differences between sections, species and hybrids. Tree Genet Genomes 6:259–269. doi:10.1007/s11295-009-0246-5

    Article  Google Scholar 

  • Liesebach H, Naujoks G, Ewald D (2011) Successful hybridisation of normally incompatible hybrid aspen (Populus tremula × P. tremuloides) and eastern cottonwood (P. deltoides). Sex Plant Reprod 24:189–198. doi:10.1007/s00497-010-0156-6

    Article  PubMed  Google Scholar 

  • Liesebach M, Schneck V, Wolf H (2012) Züchtung von Aspen für den Kurzumtrieb (Aspen improvement for short rotation coppice). In: Züchtung und Ertragsleistung schnellwachsender Baumarten im Kurzumtrieb - Erkenntnisse aus drei Jahren FastWOOD, ProLoc und Weidenzüchtung, Hann. Münden. Beiträge aus der Nordwestdeutschen Forstlichen Versuchsanstalt, pp 73–90

  • Lu M, Zhang P, Kang X (2013) Induction of 2n female gametes in Populus adenopoda Maxim by high temperature exposure during female gametophyte development. Breed Sci 63:96–103. doi:10.1270/jsbbs.63.96

    Article  PubMed Central  PubMed  Google Scholar 

  • Lu M, Zhang P, Wang J, Kang X, Wu J, Wang X, Chen Y (2014) Induction of tetraploidy using high temperature exposure during the first zygote division in Populus adenopoda Maxim. Plant Growth Regul 72:279–287. doi:10.1007/s10725-013-9859-7

    Article  CAS  Google Scholar 

  • Mashkina OS, Burdaeva IM, Belozerova MM, V’Yunova LN (1989) A method of inducing diploid pollen in woody species. Lesovedenie 1:19–25

    Google Scholar 

  • Mercier R, Grelon M (2008) Meiosis in plants: ten years of gene discovery. Cytogenet Genome Res 120:281–290. doi:10.1159/000121077

    Article  CAS  PubMed  Google Scholar 

  • Müntzing A (1936) The evolutionary significance of autopolyploidy. Hereditas 21:363–378. doi:10.1111/j.1601-5223.1936.tb03204.x

    Article  Google Scholar 

  • Nemorin A, David J, Maledon E, Nudol E, Dalon J, Arnau G (2013) Microsatellite and flow cytometry analysis to help understand the origin of Dioscorea alata polyploids. Ann Bot 112:811–819. doi:10.1093/aob/mct145

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peloquin SJ, Boiteux LS, Simon PW, Jansky SH (2008) A chromosome-specific estimate of transmission of heterozygosity by 2n gametes in potato. J Hered 99:177–181. doi:10.1093/jhered/esm110

    Article  CAS  PubMed  Google Scholar 

  • Ramanna MS, Jacobsen E (2003) Relevance of sexual polyploidization for crop improvement—a review. Euphytica 133:3–8. doi:10.1023/A:1025600824483

    Article  Google Scholar 

  • Seitz FW (1954) The occurrence of triploids after self-pollination of anomalous androgynous flowers of a grey poplar. Z Forstgenet 3:1–6

    Google Scholar 

  • Tuskan GA et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604. doi:10.1126/science.1128691

    Article  CAS  PubMed  Google Scholar 

  • Ulrich K, Ewald D (2014) Breeding triploid aspen and poplar clones for biomass production. Silv Genet 63:47–58

    Google Scholar 

  • Vining K et al (2012) Dynamic DNA cytosine methylation in the Populus trichocarpa genome: tissue-level variation and relationship to gene expression. BMC Genomics 13:27. doi:10.1186/1471-2164-13-27

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang J, Kang X-Y, Li D-L, Chen H, Zhang P (2010) Induction of diploid eggs with colchicine during embryo sac development in Populus. Silv Genet 59:40–48

    Google Scholar 

  • Wang J, Kang X-Y, Li D-L (2012) High temperature-induced triploid production during embryo sac development in Populus. Silv Genet 61:85–93

    Google Scholar 

  • Xi XJ, Jiang XB, Li D, Guo LQ, Zhang JF, Wei ZZ, Li BL (2011) Induction of 2n pollen by colchicine in Populus × popularis and its triploids breeding. Silv Genet 60:155–160

    Google Scholar 

  • Yang S, Lu L, Ni Y (2006) Cloned poplar as a new fibre resource for the Chinese pulp and paper industry. Pulp Pap Can 107:34–37

    CAS  Google Scholar 

  • Yao H, Dogra Gray A, Auger DL, Birchler JA (2013) Genomic dosage effects on heterosis in triploid maize. PNAS 110:2665–2669. doi:10.1073/pnas.1221966110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yin T, DiFazio SP, Gunter LE, Riemenschneider D, Tuskan GA (2004) Large-scale heterospecific segregation distortion in Populus revealed by a dense genetic map. Theor Appl Genet 109:451–463. doi:10.1007/s00122-004-1653-5

    Article  CAS  PubMed  Google Scholar 

  • Younis A, Hwang Y-J, Lim K-B (2014) Exploitation of induced 2n-gametes for plant breeding. Plant Cell Rep 33:215–223. doi:10.1007/s00299-013-1534-y

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Kang X-Y (2010) Cytological characteristics of numerically unreduced pollen production in Populus tomentosa Carr. Euphytica 173:151–159. doi:10.1007/s10681-009-0051-0

    Article  Google Scholar 

  • Zhang ZY, Li FL, Zhu ZT (1992) Chromosome doubling and triploid breeding of Populus tomentosa Carr. and its hybrid. J Beijing For Univ 14(Suppl):52–58

    Google Scholar 

  • Zhang J-F, Wei Z-Z, Li D, Li B (2009) Using SSR markers to study the mechanism of 2n pollen formation in Populus × euramericana (Dode) Guinier and P. × popularis. Ann For Sci 66:506. doi:10.1051/forest/2009032

    Article  Google Scholar 

  • Zhu Z, Kang X, Zhang Z (1998) Studies on selection of natural triploids of Populus tomentosa. Sci Silvae Sin 34:22–32

    Google Scholar 

Download references

Acknowledgments

We thank Prof. Yang Minsheng (Agricultural University of Hebei, China) for providing Populus simonii pollen, Mr. Volker Schneck (Thünen Institute of Forest Genetics Waldsieversdorf) for providing some spontaneously generated triploids poplar plants, Ms. Elke Ewald for laboratory assistance in genotyping and Ms. Dina Führmann for language editing. We also thank the anonymous reviewers for their helpful comments. This work was funded by the German Agency Renewable Resources (Fachagentur Nachwachsende Rohstoffe e.V. (FNR)).

Data archiving statement

A spreadsheet file in the form of marker/genotype data is provided as a supplementary material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heike Liesebach.

Additional information

Communicated by A. Brunner

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLSX 12 kb)

ESM 2

(XLSX 40 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liesebach, H., Ulrich, K. & Ewald, D. FDR and SDR processes in meiosis and diploid gamete formation in poplars (Populus L.) detected by centromere-associated microsatellite markers. Tree Genetics & Genomes 11, 801 (2015). https://doi.org/10.1007/s11295-014-0801-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-014-0801-6

Keywords

Navigation