Skip to main content
Log in

Phylogenetic relationships and infrageneric classification of Epidendrum subgenus Amphiglottium (Laeliinae, Orchidaceae)

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Epidendrum L. is the largest genus of Orchidaceae in the Neotropical region; it has an impressive morphological diversification, which imposes difficulties in delimitation of both infrageneric and interspecific boundaries. In this study, we review infrageneric boundaries within the subgenus Amphiglottium and try to contribute to the understanding of morphological diversification and taxa delimitation within this group. We tested the monophyly of the subgenus Amphiglottium sect. Amphiglottium, expanding previous phylogenetic investigations and reevaluated previous infrageneric classifications proposed. Sequence data from the trnL-trnF region were analyzed with both parsimony and maximum likelihood criteria. AFLP markers were also obtained and analyzed with phylogenetic and principal coordinate analyses. Additionally, we obtained chromosome numbers for representative species within the group. The results strengthen the monophyly of the subgenus Amphiglottium but do not support the current classification system proposed by previous authors. Only section Tuberculata comprises a well-supported monophyletic group, with sections Carinata and Integra not supported. Instead of morphology, biogeographical and ecological patterns are reflected in the phylogenetic signal in this group. This study also confirms the large variability of chromosome numbers for the subgenus Amphiglottium (numbers ranging from 2n = 24 to 2n = 240), suggesting that polyploidy and hybridization are probably important mechanisms of speciation within the group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aceto S, Caputo P, Cozzolino S, Gaudio L, Moretti A (1999) Phylogeny and evolution of Orchis and allied genera based on ITS DNA variation: morphological gaps and molecular continuity. Mol Phylogenet Evol 13:67–76

    Article  CAS  PubMed  Google Scholar 

  • Applied Biosystems (2000) AFLP plant mapping protocol. PE Applied Biosystems, Foster City. Home page at: http://docs. Appliedbiosystems.com. Accessed 10 April 2009

  • Archibald JK, Mort ME, Crawford DJ, Santos-Guerra A (2006) Evolutionary relationships within recently radiated taxa: comments on methodology and analysis of inter-simple sequence repeat data and other hypervariable, dominant markers. Taxon 55:747–756

    Article  Google Scholar 

  • Backeljau T, De Bruyn L, De Wolf H, Jordaens K, Van Dongen S, Verhagen R, Winnepenninckx B (1995) Random amplified polymorphic DNA (RAPD) and parsimony methods. Cladistics 11:119–130

    Article  Google Scholar 

  • Blumenschein A (1960) Número de cromossomas de algumas espécies de orquídeas. Publ Cient Instit Gen, Piracicaba, São Paulo 1:45–50

    Google Scholar 

  • Borba EL, Shepherd GJ, van den Berg C, Semir J (2002) Floral and vegetative morphometrics of five Pleurothallis (Orchidaceae) species: correlation with taxonomy, phylogeny, genetic variability and pollination systems. Ann Bot 90:219–230

    Article  CAS  PubMed  Google Scholar 

  • Brieger FG (1976–1977) Gattungsreihe Epidendra. In: Brieger FG, Maatsch R, Senghas K (eds) Schlechter Die Orchideen. Paul Parey, Berlin, pp 509–549

  • Bussell JD, Waycottb M, Chappilla JA (2005) Arbitrarily amplified DNA markers as characters for phylogenetic inference. Perspect Plant Ecol Evol Syst 7:3–26

    Article  Google Scholar 

  • Carnevali G, Ramírez-Morillo I (2003) Epidendrum. In: Berry P, Yatskievych K, Holst B (eds) Flora of the Venezuelan Guayana 7. Missouri Botanical Garden Press, Saint Louis, pp 325–352

    Google Scholar 

  • Chase M (1999) Molecular systematics, parsimony, and orchid classification. In: Pridgeon AM, Cribb PJ, Chase MW, Rasmussen FN (eds) Genera Orchidacearum 1. Oxford University Press, Oxford, pp 81–88

    Google Scholar 

  • Cogniaux A (1898–1902) Epidendrum. In: Martius CFP, Eichler AG, Urban I (eds) Flora Brasiliensis 3(5). R. Oldenbourg, Munich, pp 30–186

  • Conceição LP, Oliveira ALPC, Barbosa LV (2006) Characterization of the species Epidendrum cinnabarinum Salzm. (Epidendroideae: Orchidaceae) occurring in Dunas do Abaeté—Salvador, BA—Brasil. Cytologia 71:125–129

    Article  Google Scholar 

  • Després L, Gielly L, Redoutet B, Taberlet P (2003) Using AFLP to resolve phylogenetic relationships in a morphologically diversified plant species complex when nuclear and chloroplast sequences fail to reveal variability. Mol Phylogenet Evol 27:185–196

    Article  PubMed  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1990) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Dressler RL (1989) Will the real Epidendrum ibaguense please stand up? Am Orchid Soc Bull 58:796–800

    Google Scholar 

  • Dunsterville GC (1979) Orchids of Venezuela—Epidendrum elongatum. Am Orchid Soc Bull 48:447–454

    Google Scholar 

  • Dunsterville GCK, Garay LA (1961) Venezuelan orchids illustrated, vol 2. Andre Deutsch, London

    Google Scholar 

  • Farris JS (1977) Phylogenetic analysis under Dollo’s Law. Syst Zool 26:77–88

    Article  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416

    Article  Google Scholar 

  • Funk DJ, Omland KE (2003) Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annu Rev Ecol Syst 34:397–423

    Article  Google Scholar 

  • Gower JC (1966) Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53:325–338

    Google Scholar 

  • Guerra M (1983) O uso do Giemsa na citogenética vegetal–comparação entre a coloração simples e o bandeamento. Cienc Cult 35:190–193

    Google Scholar 

  • Hágsater E (1984) Towards an understanding of the genus Epidendrum. In: Tan KW (ed) Proceedings of the 11st World Orchid Conference. 11st World Orchid Conference, Miami, pp 195–201

  • Hágsater E, Salazar GA (1990) Icones Orchidacearum—orchids of Mexico, part 1. Herbario AMO, Mexico

    Google Scholar 

  • Hágsater E, Soto Arenas MA (2005) Epidendrum L. In: Pridgeon AM, Cribb PJ, Chase MW, Rasmussen FN (eds) Genera Orchidacearum, vol 4. Oxford University Press, Oxford, pp 236–251

    Google Scholar 

  • Harris SA (1999) Molecular approaches to assessing plant diversity. In: Benson EE (ed) Plant conservation biotechnology. Taylor and Francis, London, pp 11–24

    Google Scholar 

  • Hegarty MJ, Hiscock SJ (2005) Hybrid speciation in plants: new insights from molecular studies. New Phytol 165:411–423

    Article  CAS  PubMed  Google Scholar 

  • Lenz LW, Wimber DE (1959) Hybridization and inheritance in orchids. In: Withner CL (ed) The orchids, a scientific survey. Ronald Press, New York, pp 261–314

    Google Scholar 

  • Lindley J (1852–1859) Epidendrum. In: Lindley J (ed) Folia Orchidacea. J. Matthews, London, pp 1–97

  • Miranda FE (1993) Epidendrum × ormindoi Miranda hyb. nat. nov. Bradea 6:164–166

    Google Scholar 

  • Nei M, Li W (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Nat Acad Sci USA 76:5269–5273

    Article  CAS  PubMed  Google Scholar 

  • Pabst GFJ, Dungs F (1975) Orchidaceae Brasilienses, vol 1. Kurt Schmersow, Hildesheim

    Google Scholar 

  • Page RDM (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    CAS  PubMed  Google Scholar 

  • Pansarin ER, Amaral MCE (2008) Reproductive biology and pollination mechanisms of Epidendrum secundum (Orchidaceae)—floral variation: a consequence of natural hybridization? Plant Biol 10:211–219

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro F, Barros F (2006) Epidendrum puniceoluteum, uma nova espécie de Orchidaceae do litoral brasileiro. Hoehnea 33:247–250

    Google Scholar 

  • Pinheiro F, Barros F (2007) Epidendrum secundum Jacq. e E. denticulatum Barb. Rodr. (Orchidaceae): caracteres úteis para a sua separação. Hoehnea 34:563–570

    Google Scholar 

  • Pinheiro F, Barros F (2008) Morphometric analysis of Epidendrum secundum (Orchidaceae) in southeastern Brazil. Nord J Bot 25:129–136

    Article  Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  • Rieseberg LH (1997) Hybrid origins of plant species. Annu Rev Ecol Syst 28:359–389

    Article  Google Scholar 

  • Robinson JP, Harris SA (1999) Amplified fragment length polymorphisms and microsatellites: a phylogenetic perspective. In: Gillet EM (ed) Which DNA marker for which purpose? http://webdoc.sub.gwdg.de/ebook/y/1999/whichmarker/index.htm. Accessed 20 March 2009

  • Seehausen O (2004) Hybridization and adaptive radiation. Trends Ecol Evol 19:198–207

    Article  PubMed  Google Scholar 

  • Shepherd GJ (2006) Fitopac versão 1.6.4. Universidade Estadual de Campinas, Campinas

    Google Scholar 

  • Singer RB, Koehler S (2004) Pollinarium morphology and floral rewards in Brazilian Maxillariinae (Orchidaceae). Ann Bot 93:39–51

    Article  PubMed  Google Scholar 

  • Smith A (1994) Rooting molecular trees: problems and strategies. Biol J Linn Soc 51:279–292

    Article  Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical taxonomy: the principles and practice of numerical classification. WH Freeman, San Francisco

    Google Scholar 

  • Swofford DL (2003) PAUP*: phylogenetic analysis using parsimony (and other methods), version 4.0b10. Sinauer Associates, Sunderland

    Google Scholar 

  • Swofford DL, Olsen GJ (1990) Phylogeny reconstruction. In: Hillis DM, Moritz C (eds) Molecular systematics. Sinauer Associates, Sunderland, pp 411–501

    Google Scholar 

  • Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Bio 17:1105–1109

    Article  CAS  Google Scholar 

  • Tanaka R, Kamemoto H (1984) Chromosomes in orchids: counting and numbers. In: Arditti J (ed) Orchid biology: reviews and perspectives III. Cornell University Press, Ithaca, pp 324–410

    Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensibility of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  Google Scholar 

  • van den Berg C, Higgins WE, Dressler RL, Whitten WM, Arenas MAS, Culham A, Chase MW (2000) A phylogenetic analysis of Laeliinae (Orchidaceae) based on sequence data from internal transcribed spacers (ITS) of nuclear ribossomal DNA. Lindleyana 15:96–114

    Google Scholar 

  • van der Pijl L, Dodson CH (1966) Orchid flowers: their pollination and evolution. University of Miami Press, Coral Gables

    Google Scholar 

  • Vasquez R, Ibisch PL (2004) Orquídeas de Bolívia vol. 2: Subtribus Laeliinae, Polystachinae, Sobraliinae. Editorial FAN, Santa Cruz de la Sierra

    Google Scholar 

  • Vij SP, Shekhar N (1985) Chromosome number reports LXXXVII. Taxon 34:346–351

    Google Scholar 

  • White MJD (1978) Modes of speciation. Freeman, San Francisco

    Google Scholar 

  • Whitten WM, Blanco MA, Williams NH, Koehler S, Carnevali G, Singer RB, Endara L, Neubig KM (2007) Molecular phylogenetics of Maxillaria and related genera (Orchidaceae: Cymbidieae) based on combined molecular data sets. Am J Bot 94:1860–1889

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank R. Custódio, J. Leônidas, J. Batista, L.P. Félix, J. Lima-Verde, N. von Atzingen, M. Peixoto, C.N. Fraga, M. Bocayuva, M. Moraes, E.C. Smidt, J. Stancik, G. Lopes, M.A. Farinaccio, and M. Trovó for the help in collecting plant specimens; L.B. Mota, M.M.S. Ferreira, C. Rodrigues, C. Furlan, and S. Blanco for lab assistance; E.L.M. Catharino, R.P. Peres, H. Michelan, and R. Chaves for supporting orchid cultivation at Instituto de Botânica de São Paulo; Naciolinda Obers for help in translating German texts; L.G. Lohman, G.J. Shepherd, E. Hágsater, and M.A. Soto Arenas for valuable comments on previous versions of this manuscript. F.P. and S.K. received fellowships from Fundação de Amparo à Pesquisa do Estado de São Paulo, FAPESP (03/03063-1 and 06/55121-3, respectively), F.B. received a grant of the Conselho Nacional do Desenvolvimento Científico e Tecnológico, CNPq (303962/2004-6). This study was funded by a grant from FAPESP to FB (03/03062-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fábio Pinheiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinheiro, F., Koehler, S., Corrêa, A.M. et al. Phylogenetic relationships and infrageneric classification of Epidendrum subgenus Amphiglottium (Laeliinae, Orchidaceae). Plant Syst Evol 283, 165–177 (2009). https://doi.org/10.1007/s00606-009-0224-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-009-0224-2

Keywords

Navigation