Acharya T, Devireddy RV (2010) Cryomicroscopic investigations of freezing processes in cell suspensions. Open Biotechnol J 4:26–35. https://doi.org/10.2174/1874070701004010026
Article
Google Scholar
Alba V, Bisignano V, Alba E, De Stradis A, Polignano GB (2011) Effects of cryopreservation on germinability of olive (Olea europaea L.) pollen. Genet Resour Crop Ev 58:977–982. https://doi.org/10.1007/s10722-011-9736-z
Article
Google Scholar
Bailly C (2004) Active oxygen species and antioxidants in seed biology. Seed Sci Res 14:93–107. https://doi.org/10.1079/ssr2004159
CAS
Article
Google Scholar
Bajaj YPS (1985) Cryopreservation of embryos. In: Kartha KK (ed) Cryopreservation of plant cells and organs. CRC Press Inc., Boca Raton, pp 227–267
Google Scholar
Ballesteros D, Walters CT (2007) Calorimetric properties of water and triacylglycerols in fern spores relating to storage at cryogenic temperatures. Cryobiology 55:1–9. https://doi.org/10.1016/j.cryobiol.2007.03.006
CAS
Article
PubMed
Google Scholar
Ballesteros D, Walters C (2011) Detailed characterization of mechanical properties and molecular mobility within dry seed glasses: relevance to the physiology of dry biological systems. Plant J 68:607–619. https://doi.org/10.1111/j.1365-313X.2011.04711.x
CAS
Article
PubMed
Google Scholar
Ballesteros D, Sershen VB, Berjak P, Pammenter NW (2014) Uneven drying of zygotic embryos and embryonic axes of recalcitrant seeds: challenges and considerations for cryopreservation. Cryobiology 69:100–109. https://doi.org/10.1016/j.cryobiol.2014.05.010
Article
PubMed
Google Scholar
Barnabás B, Rajki E (1976) Storage of maize (Zea mays L.) pollen at -196° C in liquid nitrogen. Euphytica 25:747–752. https://doi.org/10.1007/Bf00041614
Article
Google Scholar
Barnabás B, Rajki E (1981) Fertility of deep-frozen maize (Zea mays L.) pollen. Ann Bot-Lond 48:861–864. https://doi.org/10.1093/oxfordjournals.aob.a086193
Article
Google Scholar
Benson EE (2004) Cryoconserving algal and plant diversity: historical perspectives and future challenges. In: Fuller BJ, Lane N, Benson EE (eds) Life in the frozen state. CRC Press, London, UK, pp 299–328
Chapter
Google Scholar
Benson EE (2008) Cryopreservation of phytodiversity: a critical appraisal of theory and practice. Crit Rev Plant Sci 27:141–219. https://doi.org/10.1080/07352680802202034
CAS
Article
Google Scholar
Berjak P (2006) Unifying perspectives of some mechanisms basic to desiccation tolerance across life forms. Seed Sci Res 16:1–15. https://doi.org/10.1079/Ssr2005236
CAS
Article
Google Scholar
Berjak P, Pammenter NW (2004) Recalcitrant seeds. In: Benech-Arnold RL, Sanchez RA (eds) Handbook of seed physiology: applications to agriculture. Haworth, New York, pp 305–345
Google Scholar
Berjak P, Vertucci CW, Pammenter NW (1993) Effects of developmental status and dehydration rate on characteristics of water and desiccation-sensitivity in recalcitrant seeds of Camellia sinensis. Seed Sci Res 3:155–166. https://doi.org/10.1017/S0960258500001732
Article
Google Scholar
Brewbaker JL (1967) The distribution and phylogenetic significance of binucleate and trinucleate pollen grains in the angiosperms. Am J Bot 54:1069–1083. https://doi.org/10.1002/j.1537-2197.1967.tb10735.x
Article
Google Scholar
Buitink J, Leprince O (2004) Glass formation in plant anhydrobiotes: survival in the dry state. Cryobiology 48:215–228. https://doi.org/10.1016/j.cryobiol.2004.02.011
CAS
Article
PubMed
Google Scholar
Buitink J, Walters-Vertucci C, Hoekstra FA, Leprince O (1996) Calorimetric properties of dehydrating pollen (analysis of a desiccation-tolerant and an intolerant species). Plant Physiol 111:235–242. https://doi.org/10.1104/pp.111.1.235
CAS
Article
PubMed
PubMed Central
Google Scholar
Buitink J, Walters CT, Hoekstra FA, Crane J (1998) Storage behavior of Typha latifolia pollen at low water contents: interpretation on the basis of water activity and glass concepts. Physiol Plant 103:145–153. https://doi.org/10.1034/j.1399-3054.1998.1030201.x
CAS
Article
Google Scholar
Connor KF, Towill LE (1993) Pollen-handling protocol and hydration/dehydration characteristics of pollen for application to long-term storage. Euphytica 68:77–84. https://doi.org/10.1007/bf00024157
Article
Google Scholar
D´Souza L (1970) Untersuchungen über die Eignung des Weizens als Pollenspender bei der Fremdbefruchtung, verglichen mit Roggen, Triticale und Secalotricum. Zeitschrift Für Pflanzenzüchtung 63:246–269
Google Scholar
Day JG, Fleck RA, Benson EE (2000) Cryopreservation-recalcitrance in microalgae: novel approaches to identify and avoid cryo-injury. J Appl Phycol 12:369–377. https://doi.org/10.1023/A:1008107229005
Article
Google Scholar
Diller KR, Cravalho EG (1971) A cryomicroscope for the study of freezing and thawing processes in biological cells. Cryobiology 7:191–199. https://doi.org/10.1016/0011-2240(70)90021-0
Article
Google Scholar
Dinato NB, Imaculada Santos IR, Zanotto Vigna BB, de Paula AF, Fávero AP (2020) Pollen cryopreservation for plant breeding and genetic resources conservation. CryoLetters 41:115–127
PubMed
Google Scholar
Dong J, Malsam J, Bischof JC, Hubel A, Aksan A (2010) Spatial distribution of the state of water in frozen mammalian cells. Biophys J 99:2453–2459. https://doi.org/10.1016/j.bpj.2010.08.035
CAS
Article
PubMed
PubMed Central
Google Scholar
Dumont F, Marechal P-A, Gervais P (2003) Influence of cooling rate on Saccharomyces cerevisiae destruction during freezing: unexpected viability at ultra-rapid cooling rates. Cryobiology 46:33–42. https://doi.org/10.1016/S0011-2240(02)00161-X
Article
PubMed
Google Scholar
Fahy GM, Wowk B (2015) Principles of cryopreservation by vitrification. In: Wolkers WF, Oldenhof H (eds) Cryopreservation and freeze-drying protocols. Springer, New York, pp 21–82
Chapter
Google Scholar
Farrant JM, Berjak P, Pammenter NW (1993) Studies on the development of the desiccation-sensitive (recalcitrant) seeds of Avicennia marina (Forssk.) Vierh.: the acquisition of germinability and response to storage and dehydration. Ann Bot-Lond 71:405–410. https://doi.org/10.1006/anbo.1993.1051
Article
Google Scholar
Franchi GG, Nepi M, Dafni A, Pacini E (2002) Partially hydrated pollen: taxonomic distribution, ecological and evolutionary significance. Plant Syst Evol 234:211–227. https://doi.org/10.1007/s00606-002-0221-1
CAS
Article
Google Scholar
Ganeshan S, Rajasekharan PE, Shashikumar S, Decruze W (2008) Cryopreservation of pollen. In: Reed BM (ed) Plant cryopreservation: a practical guide. Springer Science and Business Media, Corvallis, USA, pp 443–464
Chapter
Google Scholar
Gaudet D, Yadav NS, Sorokin A, Bilichak A, Kovalchuk I (2020) Development and optimization of a germination assay and long-term storage for Cannabis sativa pollen. Plants 9:665. https://doi.org/10.3390/plants9050665
CAS
Article
PubMed Central
Google Scholar
Geng X, Qiu J, Okubo H (2013) Changes of carbohydrate content during Lilium and Gladiolus pollen cryopreservation. Grana 52:202–206. https://doi.org/10.1080/00173134.2013.819033
Article
Google Scholar
Halliwell B, Gutteridge JM (2015) Free radicals in biology and medicine. Oxford University Press, USA
Book
Google Scholar
Hanna WW (1990) Long-term storage of Pennisetum glaucum (L.) R. Br. Pollen. Theoret Appl Genetics 79:605–608. https://doi.org/10.1007/BF00226872
CAS
Article
Google Scholar
Hecker RJ, Stanwood PC, Soulis CA (1986) Storage of sugarbeet pollen. Euphytica 35:777–783. https://doi.org/10.1007/BF00028585
Article
Google Scholar
Hendry GA, Finch-Savage W, Thorpe PC, Atherton NM, Buckland SM, Nilsson KA, Seel WE (1992) Free radical processes and loss of seed viability during desiccation in the recalcitrant species Quercus robur L. New Phytol 122:273–279. https://doi.org/10.1111/j.1469-8137.1992.tb04231.x
CAS
Article
PubMed
Google Scholar
Hoekstra FA, Crowe LM, Crowe HJ (1989) Differential desiccation sensitivity of corn and Pennisetum pollen linked to their sucrose contents. Plant Cell Environ 12:83–91. https://doi.org/10.1111/j.1365-3040.1989.tb01919.x
CAS
Article
Google Scholar
Hoekstra FA, Golovina EA, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6:431–438. https://doi.org/10.1016/s1360-1385(01)02052-0
CAS
Article
PubMed
Google Scholar
Impe D, Reitz J, Köpnick C, Rolletschek H, Börner A, Senula A, Nagel M (2020) Assessment of pollen viability for wheat. Front Plant Sci 10:1588. https://doi.org/10.3389/fpls.2019.01588
Article
PubMed
PubMed Central
Google Scholar
Inagaki M, Mujeeb-Kazi A (1994) Storage of maize pollen for use in haploid production of hexaploid wheat. Jpn J Breeding 44:387–390. https://doi.org/10.1270/jsbbs1951.44.387
Article
Google Scholar
Karlsson JO (2015) Measurement of intracellular ice formation kinetics by high-speed video cryomicroscopy. Methods Mol Biol 1257:181–227. https://doi.org/10.1007/978-1-4939-2193-5_7
Article
PubMed
Google Scholar
Kerhoas C, Gay G, Dumas C (1987) A multidisciplinary approach to the study of the plasma membrane of Zea mays pollen during controlled dehydration. Planta 171:1–10. https://doi.org/10.1007/BF00395062
CAS
Article
PubMed
Google Scholar
Kioko J, Berjak P, Pammenter N, Watt M, Wesley-Smith J (1998) Desiccation and cryopreservation of embryonic axes of Trichilia dregeana Sond. CryoLetters 19:5–14
Google Scholar
Körber C, Englich S, Rau G (1991) Intracellular ice formation: cryomicroscopical observation and calorimetric measurement. J Microsc 161:313–325. https://doi.org/10.1111/j.1365-2818.1991.tb03092.x
Article
PubMed
Google Scholar
Leprince O, Hoekstra FA (1998) The responses of cytochrome redox state and energy metabolism to dehydration support a role for cytoplasmic viscosity in desiccation tolerance. Plant Physiol 118:1253–1264. https://doi.org/10.1104/pp.118.4.1253
CAS
Article
PubMed
PubMed Central
Google Scholar
Maryam, Jaskani JM, Naqvi SA (2017) Storage and viability assessment of date palm pollen. In: Al-Khayri J, Jain S, Johnson DV (eds) Methods mol biol. Humana Press, New York, NY, pp 3–13
Google Scholar
Mazur P (1984) Freezing of living cells: mechanisms and implications. Am J Physiol-Cell Ph 247:C125–C142. https://doi.org/10.1152/ajpcell.1984.247.3.C125
CAS
Article
Google Scholar
Mazur P (2004) Principles of cryobiology. In: Fuller BJ, Lane N, Benson EE (eds) Life in the frozen state. CRC Press, Boca Raton, FL, USA, pp 3–65
Chapter
Google Scholar
Mazur P, Seki S, Pinn IL, Kleinhans FW, Edashige K (2005) Extra- and intracellular ice formation in mouse oocytes. Cryobiology 51:29–53. https://doi.org/10.1016/j.cryobiol.2005.04.008
CAS
Article
PubMed
Google Scholar
Meryman HT (1966) The interpretation of freezing rates in biological materials. Cryobiology 2:165–170. https://doi.org/10.1016/S0011-2240(66)80163-3
CAS
Article
PubMed
Google Scholar
Meryman HT, Williams RJ (1985) Basic principles of freezing injury to plant cells: natural tolerance and approaches to cryopreservation. In: Kartha KK (ed) Cryopreservation of plant cells and organs. CRC Press Inc., Boca Raton, pp 13–47
Google Scholar
Nath J, Anderson JO (1975) Effect of freezing and freeze-drying on the viability and storage of Lilium longiflorum L. and Zea mays L. pollen. Cryobiology 12:81–88. https://doi.org/10.1016/0011-2240(75)90042-5
CAS
Article
PubMed
Google Scholar
Nebot A, Philpott VJ, Pajdo A, Ballesteros D (2021) Cryopreservation of fern spores and pollen. In: Wolkers WF, Oldenhof H (eds) Cryopreservation and freeze-drying protocols. Springer, New York, pp 623–637
Chapter
Google Scholar
Normah MN, Makeen AM (2008) Cryopreservation of excised embryos and embryonic axes. In: Reed BM (ed) Plant cryopreservation: a practical guide. Springer, New York, pp 211–240
Chapter
Google Scholar
Oliver MJ, Farrant JM, Hilhorst HWM, Mundree S, Williams B, Bewley JD (2020) Desiccation tolerance: avoiding cellular damage during drying and rehydration. Annu Rev Plant Biol 71:435–460. https://doi.org/10.1146/annurev-arplant-071219-105542
CAS
Article
PubMed
Google Scholar
Pacini E, Franchi GG (2020) Pollen biodiversity - why are pollen grains different despite having the same function? A review. Bot J Linn Soc 193:141–164. https://doi.org/10.1093/botlinnean/boaa014
Article
Google Scholar
Pammenter NW, Berjak P (1999) A review of recalcitrant seed physiology in relation to desiccation-tolerance mechanisms. Seed Sci Res 9:13–37. https://doi.org/10.1017/S0960258599000033
Article
Google Scholar
Pammenter NW, Berjak P (2000) Aspects of recalcitrant seed physiology. VII Brazilian Plant Physiology Congress. Sociedade Brasileira de Fisiologia Vegetal, Lavras, Brazil, pp 56–69
Google Scholar
Pammenter NW, Berjak P (2014) Physiology of desiccation-sensitive (recalcitrant) seeds and the implications for cryopreservation. Int J Plant Sci 175:21–28. https://doi.org/10.1086/673302
Article
Google Scholar
Pammenter NW, Vertucci CW, Berjak P (1991) Homeohydrous (recalcitrant) seeds: dehydration, the state of water and viability characteristics in Landolphia kirkii. Plant Physiol 96:1093–1098. https://doi.org/10.1104/pp.96.4.1093
CAS
Article
PubMed
PubMed Central
Google Scholar
Pammenter NW, Greggains V, Kioko JI, Wesley-Smith J, Berjak P, Finch-Savage WE (1998) Effects of differential drying rates on viability retention of recalcitrant seeds of Ekebergia capensis. Seed Sci Res 8:463–471. https://doi.org/10.1017/S0960258500004438
Article
Google Scholar
Pammenter NW, Berjak P, Wesley-Smith J, Vander Willigen C (2002) Experimental aspects of drying and recovery. In: Black M, Pritchard HW (eds) Desiccation and survival in plants: drying without dying. CABI Publishing, London, pp 93–110
Chapter
Google Scholar
Pammenter NW, Naidoo S, Berjak P (2003) Desiccation rate, desiccation response and damage accumulation: Can desiccation sensitivity be quantified. In: Nicolás G, Bradford KJ, Côme D, Pritchard HW (eds) The biology of seeds: recent research advances. CABI Publishing, Wallingford, pp 319–325
Google Scholar
Pegg DE (2007) Principles of cryopreservation. In: Day JG, Stacey GN (eds) Cryopreservation and freeze-drying protocols. Humana Press, Totowa, NJ, pp 39–57
Chapter
Google Scholar
Pritchard HW, Manger KR (1998) Calorimetric perspective on desiccation stress during preservation procedures with recalcitrant seeds of Quercus robur L. CryoLetters 19:23–30
Google Scholar
Rajasekharan PE, Ravish BS, Kumar TV, Ganeshan S (2013) Pollen cryobanking for tropical plant species. In: Normah MN, Chin HF, Reed BM (eds) Conservation of tropical plant species. Springer, New York, pp 65–75
Chapter
Google Scholar
Sacks EJ, Clair DAS (1996) Cryogenic storage of tomato pollen: effect on fecundity. HortScience 31:447–448. https://doi.org/10.21273/hortsci.31.3.447
Article
Google Scholar
Scheiwe MW, Korber C (1984) Thermally defined cryomicroscopy and thermodynamic analysis in lymphocyte freezing. Cryobiology 21:93–105. https://doi.org/10.1016/0011-2240(84)90026-9
CAS
Article
PubMed
Google Scholar
Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125:27–58. https://doi.org/10.1111/j.1469-8137.1993.tb03863.x
CAS
Article
PubMed
Google Scholar
Smith AU (1961) Biological effects of freezing and supercooling. Edward Arnold, London
Google Scholar
Smith AU, Smiles J (1953) Microscopic studies of mammalian tissues during cooling and rewarming from -79°C. J R Microscop Soc 73:134–139. https://doi.org/10.1111/j.1365-2818.1953.tb01980.x
CAS
Article
Google Scholar
Souza FVD, de Souza EH, da Silva RL (2018) Cryopreservation of pollen grains of pineapple and other bromeliads. In: Loyola-Vargas V, Ochoa-Alejo N (eds) Plant cell culture protocols methods in molecular biology. Humana Press, New York, NY, pp 279–288
Chapter
Google Scholar
Steponkus PL, Dowgert MF (1981) Gas bubble formation during intracellular ice formation. CryoLetters 2:42–47
Google Scholar
Stott SL, Karlsson JOM (2009) Visualization of intracellular ice formation using high-speed video cryomicroscopy. Cryobiology 58:84–95. https://doi.org/10.1016/j.cryobiol.2008.11.003
CAS
Article
PubMed
Google Scholar
Sun WQ (2000) Dielectric relaxation of water and water-plasticized biomolecules in relation to cellular water organization, cytoplasmic viscosity, and desiccation tolerance in recalcitrant seed tissues. Plant Physiol 124:1203–1216. https://doi.org/10.1104/pp.124.3.1203
CAS
Article
PubMed
PubMed Central
Google Scholar
Sun WQ (2021) DSC analysis of thermophysical properties for biomaterials and formulations. In: Wolkers WF, Oldenhof H (eds) Cryopreservation and freeze-drying protocols. Springer, New York, pp 285–302
Chapter
Google Scholar
van der Walt ID, Littlejohn GM (1996) Storage and viability testing of protea pollen. J Am Soc Hortic Sci 121:804. https://doi.org/10.21273/jashs.121.5.804
Article
Google Scholar
Vertucci CW, Farrant JM (1995) Acquisition and loss of desiccation tolerance. In: Kigel J, Galili G (eds) Seed development and germination. Marcel Dekker Inc., New York, pp 237–272
Google Scholar
Walters CT, Pammenter NW, Berjak P, Crane J (2001) Desiccation damage, accelerated ageing and respiration in desiccation tolerant and sensitive seeds. Seed Sci Res 11:135–148
Google Scholar
Wesley-Smith J, Pammenter NW, Berjak P, Walters C (2001a) The effects of two drying rates on the desiccation tolerance of embryonic axes of recalcitrant jackfruit (Artocarpus heterophyllus Lamk.) seeds. Ann Bot-Lond 88:653–664. https://doi.org/10.1006/anbo.2001.1519
Article
Google Scholar
Wesley-Smith J, Walters CT, Pammenter NW, Berjak P (2001b) Interactions among water content, rapid (nonequilibrium) cooling to -196 degrees C, and survival of embryonic axes of Aesculus hippocastanum L. seeds. Cryobiology 42:196–206. https://doi.org/10.1006/cryo.2001.2323
CAS
Article
PubMed
Google Scholar
Wolkers WF, Oldenhof H (2021) Principles underlying cryopreservation and freeze-drying of cells and tissues. In: Wolkers WF, Oldenhof H (eds) Cryopreservation and freeze-drying protocols. Springer, New York, pp 3–25
Chapter
Google Scholar
Xu J, Li B, Liu Q, Shi Y, Peng J, Jia M, Liu Y (2014) Wide-scale pollen banking of ornamental plants through cryopreservation. CryoLetters 35:312–319
CAS
PubMed
Google Scholar
Zhang J-M, Lu X-X, Xin X, Yin G-K, He J-J, Huang B, Jiang D, Chen X-L (2017) Cryopreservation of citrus anthers in the national crop genebank of China. In Vitro Cell Dev -Pl 53:318–327. https://doi.org/10.1007/s11627-017-9848-z
CAS
Article
Google Scholar