Skip to main content
Log in

Expression of AoNHX1 increases salt tolerance of rice and Arabidopsis, and bHLH transcription factors regulate AtNHX1 and AtNHX6 in Arabidopsis

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Expression of AoNHX1 from the mangrove Avicennia increases salt tolerance of rice and Arabidopsis, and specific bHLH transcription factors regulate AtNHX1 and AtNHX6 in Arabidopsis to mediate the salinity response.

Abstract

Improving crop plants to better tolerate soil salinity is a challenging task. Mangrove trees such as Avicennia officinalis have special adaptations to thrive in high salt conditions, which include subcellular compartmentalization of ions facilitated by specialized ion transporters. We identified and characterized two genes encoding Na+/H+ exchangers AoNHX1 and AoNHX6 from Avicennia. AoNHX1 was present in the tonoplast, while, AoNHX6 was localized to the ER and Golgi. Both NHXs were induced by NaCl treatment, with AoNHX1 showing high expression levels in the leaves and AoNHX6 in the seedling roots. Yeast deletion mutants (ena1-5Δ nha1Δ nhx1Δ and ena1-5Δ nha1Δ vnx1Δ) complemented with AoNHX1 and AoNHX6 showed increased tolerance to both NaCl and KCl. Expression of AoNHX1 and AoNHX6 in the corresponding Arabidopsis mutants conferred enhanced NaCl tolerance. The underlying molecular regulatory mechanism was investigated using AtNHX1 and AtNHX6 in Arabidopsis. We identified two basic helix–loop–helix (bHLH) transcription factors AtMYC2 and AtbHLH122 as the ABA-mediated upstream regulators of AtNHX1 and AtNHX6 by chromatin immunoprecipitation. Furthermore, expression of AtNHX1 and AtNHX6 transcripts was reduced in the atmyc2 and atbhlh122 mutants. Lastly, transgenic rice seedlings harboring pUBI::AoNHX1 showed enhanced salt tolerance, suggesting that this gene can be exploited for developing salt-tolerant crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78

    Article  CAS  Google Scholar 

  • Adler G, Blumwald E, Bar-Zvi D (2010) The sugar beet gene encoding the sodium/proton exchanger 1 (BvNHX1) is regulated by a MYB transcription factor. Planta 232:187–195

    Article  CAS  Google Scholar 

  • Almeida DM, Gregorio GB, Oliveira MM, Saibo NJ (2017) Five novel transcription factors as potential regulators of OsNHX1 gene expression in a salt tolerant rice genotype. Plant Mol Biol 93:61–77

    Article  CAS  Google Scholar 

  • Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Article  Google Scholar 

  • Apse MP, Blumwald E (2007) Na+ transport in plants. FEBS Lett 581:2247–2254

    Article  CAS  Google Scholar 

  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256–1258

    Article  CAS  Google Scholar 

  • Barragan V, Leidi EO, Andres Z, Rubio L, De Luca A, Fernandez JA, Cubero B, Pardo JM (2012) Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. Plant Cell 24:1127–1142

    Article  CAS  Google Scholar 

  • Bassil E, Ohto MA, Esumi T, Tajima H, Zhu Z, Cagnac O, Belmonte M, Peleg Z, Yamaguchi T, Blumwald E (2011a) The Arabidopsis intracellular Na+/H+ antiporters NHX5 and NHX6 are endosome associated and necessary for plant growth and development. Plant Cell 23:224–239

    Article  CAS  Google Scholar 

  • Bassil E, Tajima H, Liang YC, Ohto MA, Ushijima K, Nakano R, Esumi T, Coku A, Belmonte M, Blumwald E (2011b) The Arabidopsis Na+/H+ antiporters NHX1 and NHX2 control vacuolar pH and K+ homeostasis to regulate growth, flower development, and reproduction. Plant Cell 23:3482–3497

    Article  CAS  Google Scholar 

  • Bassil E, Coku A, Blumwald E (2012) Cellular ion homeostasis: emerging roles of intracellular NHX Na+/H+ antiporters in plant growth and development. J Exp Bot 63:5727–5740

    Article  CAS  Google Scholar 

  • Bassil E, Zhang S, Gong H, Tajima H, Blumwald E (2019) Cation specificity of vacuolar NHX-type cation/H+ antiporters. Plant Physiol 179:616–629

    Article  CAS  Google Scholar 

  • Brett CL, Donowitz M, Rao R (2005) Evolutionary origins of eukaryotic sodium/proton exchangers. Am J Physiol-Cell Physiol 288:C223–C239

    Article  CAS  Google Scholar 

  • Chauhan S, Forsthoefel N, Ran Y, Quigley F, Nelson DE, Bohnert HJ (2000) Na+/myo-inositol symporters and Na+/H+-antiport in Mesembryanthemum crystallinum. Plant J 24:511–522

    Article  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679

    Article  CAS  Google Scholar 

  • Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI (2014) Plant salt-tolerance mechanisms. Trends Plant Sci 19:371–379

    Article  CAS  Google Scholar 

  • Dragwidge JM, Ford BA, Ashnest JR, Das P, Gendall AR (2018a) Two endosomal NHX-type Na+/H+ antiporters are involved in auxin-mediated development in Arabidopsis thaliana. Plant Cell Physiol 59:1660–1669

    Article  CAS  Google Scholar 

  • Dragwidge JM, Scholl S, Schumacher K, Gendall AR (2018b) NHX-type Na+(K+)/H+ antiporter activity is required for endomembrane trafficking and ion homeostasis in Arabidopsis thaliana. bioRχiv. https://doi.org/10.1101/382663

    Article  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  CAS  Google Scholar 

  • Flowers TJ, Glenn EP, Volkov V (2019) Could vesicular transport of Na+ and Cl be a feature of salt tolerance in halophytes? Ann Bot 123:1–18

    Article  Google Scholar 

  • Fukuda A, Nakamura A, Tanaka Y (1999) Molecular cloning and expression of the Na+/H+ exchanger gene in Oryza sativa. Biochem Biophys Acta 1446:149–155

    CAS  PubMed  Google Scholar 

  • Fukuda A, Nakamura A, Hara N, Toki S, Tanaka Y (2011) Molecular and functional analyses of rice NHX-type Na+/H+ antiporter genes. Planta 233:175–188

    Article  CAS  Google Scholar 

  • Gaxiola RA, Rao R, Sherman A, Grisafi P, Alper SL, Fink GR (1999) The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast. Proc Natl Acad Sci USA 96:1480–1485

    Article  CAS  Google Scholar 

  • Guan B, Hu Y, Zeng Y, Wang Y, Zhang F (2011) Molecular characterization and functional analysis of a vacuolar Na+/H+ antiporter gene (HcNHX1) from Halostachys caspica. Mol Biol Rep 38:1889–1899

    Article  CAS  Google Scholar 

  • Hamada A, Shono M, Xia T, Ohta M, Hayashi Y, Tanaka A, Hayakawa T (2001) Isolation and characterization of a Na+/H+ antiporter gene from the halophyte Atriplex gmelinii. Plant Mol Biol 46:35–42

    Article  CAS  Google Scholar 

  • Hernandez A, Jiang X, Cubero B, Nieto PM, Bressan RA, Hasegawa PM, Pardo JM (2009) Mutants of the Arabidopsis thaliana cation/H+ antiporter AtNHX1 conferring increased salt tolerance in yeast: the endosome/prevacuolar compartment is a target for salt toxicity. J Biol Chem 284:14276–14285

    Article  CAS  Google Scholar 

  • Hill JE, Myers AM, Koerner TJ, Tzagoloff A (1986) Yeast/E. coli shuttle vectors with multiple unique restriction sites. Yeast 2:163–167

    Article  CAS  Google Scholar 

  • Huang Y, Cui X, Cen H, Wang K, Zhang Y (2018) Transcriptomic analysis reveals vacuolar Na+ (K+)/H+ antiporter gene contributing to growth, development, and defense in switchgrass (Panicum virgatum L.). BMC Plant Biol 18:57

    Article  Google Scholar 

  • Jiang X, Leidi EO, Pardo JM (2010) How do vacuolar NHX exchangers function in plant salt tolerance? Plant Signal Behav 5:792–795

    Article  CAS  Google Scholar 

  • Kaufmann K, Muino JM, Osteras M, Farinelli L, Krajewski P, Angenent GC (2010) Chromatin immunoprecipitation (ChIP) of plant transcription factors followed by sequencing (ChIP-SEQ) or hybridization to whole genome arrays (ChIP-CHIP). Nat Protoc 5:457–472

    Article  CAS  Google Scholar 

  • Krishnamurthy P, Jyothi-Prakash PA, Qin L, He J, Lin Q, Loh CS, Kumar PP (2014) Role of root hydrophobic barriers in salt exclusion of a mangrove plant Avicennia officinalis. Plant Cell Environ 37:1656–1671

    Article  CAS  Google Scholar 

  • Krishnamurthy P, Mohanty B, Wijaya E, Lee DY, Lim TM, Lin Q, Xu J, Loh CS, Kumar PP (2017) Transcriptomics analysis of salt stress tolerance in the roots of the mangrove Avicennia officinalis. Sci Rep 7:10031

    Article  Google Scholar 

  • Kumar S, Kalita A, Srivastava R, Sahoo L (2017) Co-expression of Arabidopsis NHX1 and bar improves the tolerance to salinity, oxidative stress, and herbicide in transgenic mungbean. Front Plant Sci 8:1896

    Article  Google Scholar 

  • Leidi EO, Barragan V, Rubio L, El-Hamdaoui A, Ruiz MT, Cubero B, Fernandez JA, Bressan RA, Hasegawa PM, Quintero FJ, Pardo JM (2010) The AtNHX1 exchanger mediates potassium compartmentation in vacuoles of transgenic tomato. Plant J 61:495–506

    Article  CAS  Google Scholar 

  • Li X (2011) Infiltration of Nicotiana benthamiana protocol for transient expression via Agrobacterium. Bio- 101:e95. https://doi.org/10.21769/BioProtoc.95

    Article  Google Scholar 

  • Liu W, Tai H, Li S, Gao W, Zhao M, Xie C, Li WX (2014) bHLH122 is important for drought and osmotic stress resistance in Arabidopsis and in the repression of ABA catabolism. New Phytol 201:1192–1204

    Article  CAS  Google Scholar 

  • Liu Y, Ji X, Nie X, Qu M, Zheng L, Tan Z, Zhao H, Huo L, Liu S, Zhang B, Wang Y (2015) Arabidopsis AtbHLH112 regulates the expression of genes involved in abiotic stress tolerance by binding to their E-box and GCG-box motifs. New Phytol 207:692–709

    Article  CAS  Google Scholar 

  • Lorenzo O, Chico JM, Sanchez-Serrano JJ, Solano R (2004) JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell 16:1938–1950

    Article  CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  Google Scholar 

  • Ohnishi M, Fukada-Tanaka S, Hoshino A, Takada J, Inagaki Y, Iida S (2005) Characterization of a novel Na+/H+ antiporter gene InNHX2 and comparison of InNHX2 with InNHX1, which is responsible for blue flower coloration by increasing the vacuolar pH in the Japanese morning glory. Plant Cell Physiol 46:259–267

    Article  CAS  Google Scholar 

  • Pardo JM, Cubero B, Leidi EO, Quintero FJ (2006) Alkali cation exchangers: roles in cellular homeostasis and stress tolerance. J Exp Bot 57:1181–1199

    Article  CAS  Google Scholar 

  • Parida AK, Jha B (2010) Salt tolerance mechanisms in mangroves: a review. Trees 24:199–217

    Article  Google Scholar 

  • Petrezselyova S, Dominguez A, Herynkova P, Macias JF, Sychrova H (2013a) Human NKCC2 cation-Cl co-transporter complements lack of Vhc1 transporter in yeast vacuolar membranes. Yeast 30:395–402

    CAS  PubMed  Google Scholar 

  • Petrezselyova S, Kinclova-Zimmermannova O, Sychrova H (2013b) Vhc1, a novel transporter belonging to the family of electroneutral cation-Cl cotransporters, participates in the regulation of cation content and morphology of Saccharomyces cerevisiae vacuoles. Biochim Biophys Acta 1828:623–631

    Article  CAS  Google Scholar 

  • Qiu QS (2016) AtNHX5 and AtNHX6: roles in protein transport. Plant Signal Behav 11:e1184810

    Article  Google Scholar 

  • Raghavendra AS, Gonugunta VK, Christmann A, Grill E (2010) ABA perception and signalling. Trends Plant Sci 15:395–401

    Article  CAS  Google Scholar 

  • Reguera M, Bassil E, Blumwald E (2014) Intracellular NHX-type cation/H+ antiporters in plants. Mol Plant 7:261–263

    Article  CAS  Google Scholar 

  • Rodriguez-Rosales MP, Galvez FJ, Huertas R, Aranda MN, Baghour M, Cagnac O, Venema K (2009) Plant NHX cation/proton antiporters. Plant Signal Behav 4:265–276

    Article  CAS  Google Scholar 

  • Sottosanto JB, Saranga Y, Blumwald E (2007) Impact of AtNHX1, a vacuolar Na+/H+ antiporter, upon gene expression during short- and long-term salt stress in Arabidopsis thaliana. BMC Plant Biol 7:18

    Article  Google Scholar 

  • Tan WK, Lin Q, Lim TM, Kumar P, Loh CS (2013) Dynamic secretion changes in the salt glands of the mangrove tree species Avicennia officinalis in response to a changing saline environment. Plant Cell Environ 36:1410–1422

    Article  CAS  Google Scholar 

  • Toki S, Hara N, Ono K, Onodera H, Tagiri A, Oka S, Tanaka H (2006) Early infection of scutellum tissue with Agrobacterium allows high-speed transformation of rice. Plant J 47:969–976

    Article  CAS  Google Scholar 

  • Tomlinson PB (1986) The botany of mangroves. The Cambridge University Press, London

    Google Scholar 

  • Venema K, Belver A, Marin-Manzano MC, Rodriguez-Rosales MP, Donaire JP (2003) A novel intracellular K+/H+ antiporter related to Na+/H+ antiporters is important for K+ ion homeostasis in plants. J Biol Chem 278:22453–22459

    Article  CAS  Google Scholar 

  • Wang J, Zuo K, Wu W, Song J, Sun X, Lin J, Li X, Tang K (2003) Molecular cloning and characterization of a new Na+/H+ antiporter gene from Brassica napus. DNA Seq 14:351–358

    Article  CAS  Google Scholar 

  • Wu X, Ebine K, Ueda T, Qiu QS (2016) AtNHX5 and AtNHX6 are required for the subcellular localization of the SNARE complex that mediates the trafficking of seed storage proteins in Arabidopsis. PLoS One 11:e0151658

    Article  Google Scholar 

  • Xia T, Apse MP, Aharon GS, Blumwald E (2002) Identification and characterization of a NaCl-inducible vacuolar Na+/H+ antiporter in Beta vulgaris. Physiol Plant 116:206–212

    Article  CAS  Google Scholar 

  • Xu H, Shi X, He L, Guo Y, Zang D, Li H, Zhang W, Wang Y (2018) Arabidopsis thaliana Trihelix transcription factor AST1 mediates salt and osmotic stress tolerance by binding to a novel AGAG-box and some GT motifs. Plant Cell Physiol 59:946–965

    Article  CAS  Google Scholar 

  • Yamaguchi T, Hamamoto S, Uozumi N (2013) Sodium transport system in plant cells. Front Plant Sci 4:410

    Article  Google Scholar 

  • Ye CY, Zhang HC, Chen JH, Xia XL, Yin WL (2009) Molecular characterization of putative vacuolar NHX-type Na+/H+ exchanger genes from the salt-resistant tree Populus euphratica. Physiol Plant 137:166–174

    Article  CAS  Google Scholar 

  • Yokoi S, Quintero FJ, Cubero B, Ruiz MT, Bressan RA, Hasegawa PM, Pardo JM (2002) Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. Plant J 30:529–539

    Article  CAS  Google Scholar 

  • Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572

    Article  CAS  Google Scholar 

  • Zeng Y, Li Q, Wang H, Zhang J, Du J, Feng H, Blumwald E, Yu L, Xu G (2018) Two NHX-type transporters from Helianthus tuberosus improve the tolerance of rice to salinity and nutrient deficiency stress. Plant Biotech J 16:310–321

    Article  CAS  Google Scholar 

  • Zhang HX, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotech 19:765–768

    Article  CAS  Google Scholar 

  • Zhang HX, Hodson JN, Williams JP, Blumwald E (2001) Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc Natl Acad Sci USA 98:12832–12836

    Article  CAS  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  Google Scholar 

  • Zhu X, Pan T, Zhang X, Fan L, Quintero FJ, Zhao H, Su X, Li X, Villalta I, Mendoza I, Shen J, Jiang L, Pardo JM, Qiu QS (2018) K+ efflux antiporters 4, 5 and 6 mediate pH and K+ homeostasis in endomembrane compartments. Plant Physiol 178:1657–1678

    Article  CAS  Google Scholar 

  • Zorb C, Noll A, Karl S, Leib K, Yan F, Schubert S (2005) Molecular characterization of Na+/H+ antiporters (ZmNHX) of maize (Zea mays L.) and their expression under salt stress. J Plant Physiol 162:55–66

    Article  Google Scholar 

Download references

Acknowledgements

This research grant was supported by the Singapore National Research Foundation under its Environment and Water Research Programme and administered by PUB, Singapore’s National Water Agency, Singapore, NRF-EWI-IRIS (R-706-000-010-272 and R-706-000-040-279). We thank the NParks Singapore for granting us permission to collect the mangrove samples from Berlayer Creek and Sungei Buloh Wetland Reserves (NP/RP 12-002-1 & NP/RP 12-002-2). Our sincere thanks to Dr. Hana Sychrová for providing the yeast strains used in this study.

Author information

Authors and Affiliations

Authors

Contributions

PK, LCS and PPK conceived the research plans; PK, KK and SR performed most of the experiments; BV carried out rice experiments; PK designed the experiments, analyzed the data and wrote the article with contributions of all the authors.

Corresponding author

Correspondence to Prakash P. Kumar.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Communicated by Prakash Lakshmanan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 268 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnamurthy, P., Vishal, B., Khoo, K. et al. Expression of AoNHX1 increases salt tolerance of rice and Arabidopsis, and bHLH transcription factors regulate AtNHX1 and AtNHX6 in Arabidopsis. Plant Cell Rep 38, 1299–1315 (2019). https://doi.org/10.1007/s00299-019-02450-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-019-02450-w

Keywords

Navigation