Skip to main content

Advertisement

Log in

Expression of a new chimeric protein with a highly repeated sequence in tobacco cells

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

In wheat, the high-molecular weight (HMW) glutenin subunits are known to contribute to gluten viscoelasticity, and show some similarities to elastomeric animal proteins as elastin. When combining the sequence of a glutenin with that of elastin is a way to create new chimeric functional proteins, which could be expressed in plants. The sequence of a glutenin subunit was modified by the insertion of several hydrophobic and elastic motifs derived from elastin (elastin-like peptide, ELP) into the hydrophilic repetitive domain of the glutenin subunit to create a triblock protein, the objective being to improve the mechanical (elastomeric) properties of this wheat storage protein. In this study, we investigated an expression model system to analyze the expression and trafficking of the wild-type HMW glutenin subunit (GSW) and an HMW glutenin subunit mutated by the insertion of elastin motifs (GSM-ELP). For this purpose, a series of constructs was made to express wild-type subunits and subunits mutated by insertion of elastin motifs in fusion with green fluorescent protein (GFP) in tobacco BY-2 cells. Our results showed for the first time the expression of HMW glutenin fused with GFP in tobacco protoplasts. We also expressed and localized the chimeric protein composed of plant glutenin and animal elastin-like peptides (ELP) in BY-2 protoplasts, and demonstrated its presence in protein body-like structures in the endoplasmic reticulum. This work, therefore, provides a basis for heterologous production of the glutenin-ELP triblock protein to characterize its mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BiP:

Binding protein

BY-2:

Bright yellow-2

ELP:

Elastin-like peptide

ER:

Endoplasmic reticulum

GFP:

Green fluorescent protein

GSW :

Wild-type glutenin subunit

GSM :

Modified glutenin subunit

GSM-ELP:

Modified glutenin subunit-elastin like peptide

HMW:

High-molecular weight

PB:

Protein body

PDI:

Protein disulphide isomerase

References

  • Anelli T, Sitia R (2008) Protein quality control in the early secretory pathway. EMBO J 27:315–327

    Article  PubMed  CAS  Google Scholar 

  • Arias FJ, Reboto V, Martin S, Lopez I, Rodriguez-Cabello JC (2006) Tailored recombinant elastin-like polymers for advanced biomedical and nano(bio)technological applications. Biotechnol Lett 28:687–695

    Article  PubMed  CAS  Google Scholar 

  • Bagga S, Adams HP, Rodriguez FD, Kemp JD, Sengupta-Gopalan C (1997) Coexpression of the maize delta-zein and beta-zein genes results in stable accumulation of delta-zein in endoplasmic reticulum-derived protein bodies formed by beta-zein. Plant Cell 9:1683–1696

    Article  PubMed  CAS  Google Scholar 

  • Blond-Elguindi S, Cwirla SE, Dower WJ, Lipshutz RJ, Sprang SR, Sambrook JF, Gething MJ (1993) Affinity panning of a library of peptides displayed on bacteriophages reveals the binding specificity of BiP. Cell 75:717–728

    Article  PubMed  CAS  Google Scholar 

  • Chiu W, Niwa Y, Zeng W, Hirano T, Kobayashi H, Sheen J (1996) Engineered GFP as a vital reporter in plants. Curr Biol 6:325–330

    Article  PubMed  CAS  Google Scholar 

  • Conley AJ, Joensuu JJ, Menassa R, Brandle JE (2009) Induction of protein body formation in plant leaves by elastin-like polypeptide fusions. BMC Biol 7:48

    Article  PubMed  Google Scholar 

  • Denery-Papini S, Popineau Y, Quillien L, Van Regenmortel MHV (1996) Specificity of antisera raised against synthetic peptide fragments of high Mr glutenin subunits. J Cereal Sci 23:133–144

    Article  CAS  Google Scholar 

  • Dupont FM, Hurkman WJ, Tanaka CK, Chan R (1998) BiP, HSP70, NDK and PDI in wheat endosperm. I. Accumulation of mRNA and protein during grain development. Physiol Plantarum 102:70–79

    Article  Google Scholar 

  • Feeney KA, Wellner N, Gilbert SM, Halford NG, Tatham AS, Shewry PR, Belton PS (2003) Molecular structures and interactions of repetitive peptides based on wheat glutenin subunits depend on chain length. Biopolymers 72:123–131

    Article  PubMed  CAS  Google Scholar 

  • Floss DM, Sack M, Stadlmann J, Rademacher T, Scheller J, Stoger E, Fischer R, Conrad U (2008) Biochemical and functional characterization of anti-HIV antibody-ELP fusion proteins from transgenic plants. Plant Biotechnol J 6:379–391

    Article  PubMed  CAS  Google Scholar 

  • Floss DM, Sack M, Arcalis E, Stadlmann J, Quendler H, Rademacher T, Stoger E, Scheller J, Fischer R, Conrad U (2009) Influence of elastin-like peptide fusions on the quantity and quality of a tobacco-derived human immunodeficiency virus-neutralizing antibody. Plant Biotechnol J 7:899–913

    Article  PubMed  CAS  Google Scholar 

  • Floss DM, Schallau K, Rose-John S, Conrad U, Scheller J (2010) Elastin-like polypeptides revolutionize recombinant protein expression and their biomedical application. Trends Biotechnol 28:37–45

    Article  PubMed  CAS  Google Scholar 

  • Foresti O, Frigerio L, Holkeri H, De Virgilio M, Vavassori S, Vitale A (2003) A phaseolin domain involved directly in trimer assembly is a determinant for binding by the chaperone BiP. Plant Cell 15:2464–2475

    Article  PubMed  CAS  Google Scholar 

  • Foresti O, De Marchis F, De Virgilio M, Klein EM, Arcioni S, Bellucci M, Vitale A (2008) Protein domains involved in assembly in the endoplasmic reticulum promote vacuolar delivery when fused to secretory GFP, indicating a protein quality control pathway for degradation in the plant vacuole. Mol Plant 1:1067–1076

    Article  PubMed  CAS  Google Scholar 

  • Frigerio L, Pastres A, Prada A, Vitale A (2001) Influence of KDEL on the fate of trimeric or assembly-defective phaseolin: selective use of an alternative route to vacuoles. Plant Cell 13:1109–1126

    Article  PubMed  CAS  Google Scholar 

  • Galili G, Altschuler Y, Levanony H (1993) Assembly and transport of seed storage proteins. Trends Cell Biol 3:437–442

    Article  PubMed  CAS  Google Scholar 

  • Ge X, Filipe CD (2006) Simultaneous phase transition of ELP tagged molecules and free ELP: an efficient and reversible capture system. Biomacromolecules 7:2475–2478

    Article  PubMed  CAS  Google Scholar 

  • Grimwade B, Tatham AS, Freedman RB, Shewry PR, Napier JA (1996) Comparison of the expression patterns of genes coding for wheat gluten proteins and proteins involved in the secretory pathway in developing caryopses of wheat. Plant Mol Biol 30:1067–1073

    Article  PubMed  CAS  Google Scholar 

  • Halford NG, Forde J, Anderson OD, Green FC, Shewry PR (1987) The nucleotide and deduced amino acid sequences of an HMW glutenin subunit gene from chromosome 1B of bread wheat (Triticum aestivum L.) and comparison with those of genes from chromosomes 1A and 1D. Theor Appl Genet 75:117–126

    Article  CAS  Google Scholar 

  • Kogan MJ, Dalcol I, Gorostiza P, Lopez-Iglesias C, Pons M, Sanz F, Ludevid D, Giralt E (2001) Self-assembly of the amphipathic helix (VHLPPP)8. A mechanism for zein protein body formation. J Mol Biol 312:907–913

    Article  PubMed  CAS  Google Scholar 

  • Kogan MJ, Dalcol I, Gorostiza P, Lopez-Iglesias C, Pons R, Pons M, Sanz F, Giralt E (2002) Supramolecular properties of the proline-rich gamma-Zein N-terminal domain. Biophys J 83:1194–1204

    Article  PubMed  CAS  Google Scholar 

  • Kreis M, Forde BG, Rahman S, Miflin BJ, Shewry PR (1985) Molecular evolution of the seed storage proteins of barley, rye and wheat. J Mol Biol 183:499–502

    Article  PubMed  CAS  Google Scholar 

  • Kumar M, Sanford KJ, Cuevas WA, Du M, Collier KD, Chow N (2006) Designer protein-based performance materials. Biomacromolecules 7:2543–2551

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Macosko CW, Urry DW (2001) Elastomeric polypentapeptides cross-linked into matrixes and fibers. Biomacromolecules 2:170–179

    Article  PubMed  CAS  Google Scholar 

  • Levanony H, Rubin R, Altschuler Y, Galili G (1992) Evidence for a novel route of wheat storage proteins to vacuoles. J Cell Biol 119:1117–1128

    Article  PubMed  CAS  Google Scholar 

  • Li X, Wu Y, Zhang DZ, Gillikin JW, Boston RS, Franceschi VR, Okita TW (1993) Rice prolamine protein body biogenesis: a BiP-mediated process. Science 262:1054–1056

    Article  PubMed  CAS  Google Scholar 

  • Lombardi A, Barbante A, Cristina PD, Rosiello D, Castellazzi CL, Sbano L, Masci S, Ceriotti A (2009) A relaxed specificity in interchain disulfide bond formation characterizes the assembly of a low-molecular-weight glutenin subunit in the endoplasmic reticulum. Plant Physiol 149:412–423

    Article  PubMed  CAS  Google Scholar 

  • Loussert C, Popineau Y, Mangavel C (2008) Protein bodies ontogeny and localization of prolamin components in the developing endosperm of wheat caryopses. J Cereal Sci 47:445–456

    Article  CAS  Google Scholar 

  • Mainieri D, Rossi M, Archinti M, Bellucci M, De Marchis F, Vavassori S, Pompa A, Arcioni S, Vitale A (2004) Zeolin. A new recombinant storage protein constructed using maize gamma-zein and bean phaseolin. Plant Physiol 136:3447–3456

    Article  PubMed  CAS  Google Scholar 

  • Mangavel C, Barbot J, Bervas E, Linossier L, Feys M, Gueguen J, Popineau Y (2002) Influence of prolamin composition on mechanical properties of cast wheat gluten films. J Cereal Sci 36:157–166

    Article  CAS  Google Scholar 

  • Meyer DE, Chilkoti A (2004) Quantification of the effects of chain length and concentration on the thermal behavior of elastin-like polypeptides. Biomacromolecules 5:846–851

    Article  PubMed  CAS  Google Scholar 

  • Miao M, Bellingham CM, Stahl RJ, Sitarz EE, Lane CJ, Keeley FW (2003) Sequence and structure determinants for the self-aggregation of recombinant polypeptides modeled after human elastin. J Biol Chem 278:48553–48562

    Article  PubMed  CAS  Google Scholar 

  • Muench DG, Wu Y, Zhang Y, Li X, Boston RS, Okita TW (1997) Molecular cloning, expression and subcellular localization of a BiP homolog from rice endosperm tissue. Plant Cell Physiol 38:404–412

    PubMed  CAS  Google Scholar 

  • Nagata T, Nemoto Y, Hasezawa S (1992) Tobacco BY-2 cell line as the “HeLa” celle in the cell biology of higher plants. Int Rev Cytol 132:1–30

    Article  CAS  Google Scholar 

  • Napier RM, Fowke LC, Hawes C, Lewis M, Pelham HR (1992) Immunological evidence that plants use both HDEL and KDEL for targeting proteins to the endoplasmic reticulum. J Cell Sci 102:261–271

    PubMed  CAS  Google Scholar 

  • Neuhaus J-M, Boevink P (2001) The green fluorescent protein (GFP) as a reporter in plant cells. In: Hawes C, Satiat-Jeunemaitre B (eds) Plant cell biology. Oxford University Press, Oxford, pp 127–142

  • Parker ML, Hawes CR (1982) The Golgi-apparatus in developing endosperm of wheat (Triticum aestivum L.). Planta 154:277–283

    Article  Google Scholar 

  • Patel J, Zhu H, Menassa R, Gyenis L, Richman A, Brandle J (2007) Elastin-like polypeptide fusions enhance the accumulation of recombinant proteins in tobacco leaves. Transgenic Res 16:239–249

    Article  PubMed  CAS  Google Scholar 

  • Pedrazzini E, Giovinazzo G, Bielli A, De Virgilio M, Frigerio L, Pesca M, Faoro F, Bollini R, Ceriotti A, Vitale A (1997) Protein quality control along the route to the plant vacuole. Plant Cell 9:1869–1880

    Article  PubMed  CAS  Google Scholar 

  • Popineau Y, Deshayes G, Lefebvre J, Fido R, Tatham AS, Shewry PR (2001) Prolamin aggregation, gluten viscoelasticity, and mixing properties of transgenic wheat lines expressing 1Ax and 1Dx high molecular weight glutenin subunit transgenes. J Agric Food Chem 49:395–401

    Article  PubMed  CAS  Google Scholar 

  • Randall JJ, Sutton DW, Hanson SF, Kemp JD (2005) BiP and zein binding domains within the delta zein protein. Planta 221:656–666

    Article  PubMed  CAS  Google Scholar 

  • Reiersen H, Clarke AR, Rees AR (1998) Short elastin-like peptides exhibit the same temperature-induced structural transitions as elastin polymers: implications for protein engineering. J Mol Biol 283:255–264

    Article  PubMed  CAS  Google Scholar 

  • Robert LS, Thompson RD, Flavell RB (1989) Tissue-specific expression of a wheat high molecular weight glutenin gene in transgenic tobacco. Plant Cell 1:569–578

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Cabello JC, Martin L, Alonso M, Arias FJ, Testera AM (2009) “Recombinamers” as advanced materials for the post-oil age. Polymer 50:5159–5169

    Article  CAS  Google Scholar 

  • Rubin R, Levanony H, Galili G (1992) Evidence for the presence of two different types of protein bodies in wheat endosperm. Plant Physiol 99:718–724

    Article  PubMed  CAS  Google Scholar 

  • Saito Y, Kishida K, Takata K, Takahashi H, Shimada T, Tanaka K, Morita S, Satoh S, Masumura T (2009) A green fluorescent protein fused to rice prolamin forms protein body-like structures in transgenic rice. J Exp Bot 60:615–627

    Article  PubMed  CAS  Google Scholar 

  • Scheller J, Henggeler D, Viviani A, Conrad U (2004) Purification of spider silk-elastin from transgenic plants and application for human chondrocyte proliferation. Transgenic Res 13:51–57

    Article  PubMed  CAS  Google Scholar 

  • Scheller J, Leps M, Conrad U (2006) Forcing single-chain variable fragment production in tobacco seeds by fusion to elastin-like polypeptides. Plant Biotechnol J 4:243–249

    Article  PubMed  CAS  Google Scholar 

  • Serrano V, Liu W, Franzen S (2007) An infrared spectroscopic study of the conformational transition of elastin-like polypeptides. Biophys J 93:2429–2435

    Article  PubMed  CAS  Google Scholar 

  • Shani N, Rosenberg N, Kasarda DD, Galili G (1994) Mechanisms of assembly of wheat high molecular weight glutenins inferred from expression of wild-type and mutant subunits in transgenic tobacco. J Biol Chem 269:8924–8930

    PubMed  CAS  Google Scholar 

  • Shewry PR (1999) The synthesis, processing, and deposition of gluten proteins in the developing wheat grain. Cereal Foods World 44:587–589

    CAS  Google Scholar 

  • Shewry PR, Halford NG (2002) Cereal seed storage proteins: structures, properties and role in grain utilization. J Exp Bot 53:947–958

    Article  PubMed  CAS  Google Scholar 

  • Shewry PR, Napier JA, Tatham AS (1995) Seed storage proteins: structures and biosynthesis. Plant Cell 7:945–956

    Article  PubMed  CAS  Google Scholar 

  • Shewry PR, Halford NG, Belton PS, Tatham AS (2002) The structure and properties of gluten: an elastic protein from wheat grain. Philos Trans R Soc Lond B Biol Sci 357:133–142

    Article  PubMed  CAS  Google Scholar 

  • Shewry PR, Halford NG, Arthus ST, Popineau Y, Lafiandra D, Belton PS (2003) The high molecular weight subunit of wheat glutenin and their role in determining wheat processing properties. Adv Food Nutr Res 45:219–302

    Article  PubMed  CAS  Google Scholar 

  • Shimoni Y, Blechl AE, Anderson OD, Galili G (1997) A recombinant protein of two high molecular weight glutenins alters gluten polymer formation in transgenic wheat. J Biol Chem 272:15488–15495

    Article  PubMed  CAS  Google Scholar 

  • Shy G, Ehler L, Herman E, Galili G (2001) Expression patterns of genes encoding endomembrane proteins support a reduced function of the Golgi in wheat endosperm during the onset of storage protein deposition. J Exp Bot 52:2387–2388

    Article  PubMed  CAS  Google Scholar 

  • Sudarshana MR, Plesha MA, Uratsu SL, Falk BW, Dandekar AM, Huang TK, Mcdonald KA (2006) A chemically inducible cucumber mosaic virus amplicon system for expression of heterologous proteins in plant tissues. Plant Biotechnol J 4:551–559

    PubMed  CAS  Google Scholar 

  • Tatham AS, Shewry PR (2000) Elastomeric proteins: biological roles, structures and mechanisms. Trends Biochem Sci 25:567–571

    Article  PubMed  CAS  Google Scholar 

  • Torrent M, Llompart B, Lasserre-Ramassamy S, Llop-Tous I, Bastida M, Marzabal P, Westerholm-Parvinen A, Saloheimo M, Heifetz PB, Ludevid MD (2009) Eukaryotic protein production in designed storage organelles. BMC Biol 7:5

    PubMed  Google Scholar 

  • Tosi P, Parker M, Gritsch CS, Carzaniga R, Martin B, Shewry PR (2009) Trafficking of storage proteins in developing grain of wheat. J Exp Bot 60:979–991

    Article  PubMed  CAS  Google Scholar 

  • Urry DW, Parker TM (2002) Mechanics of elastin: molecular mechanism of biological elasticity and its relationship to contraction. J Muscle Res Cell Motil 23:543–559

    Article  PubMed  CAS  Google Scholar 

  • Vitale A, Galili G (2001) The endomembrane system and the problem of protein sorting. Plant Physiol 125:115–118

    Article  PubMed  CAS  Google Scholar 

  • Voinnet O, Rivas S, Mestre P, Baulcombe D (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J 33:949–956

    Article  PubMed  CAS  Google Scholar 

  • Wan Y, Yan Z, Liu K, Zheng Y, D’ovidio R, Shewry PR, Halford NG, Wang D (2005) Comparative analysis of the D genome-encoded high-molecular weight subunits of glutenin. Theor Appl Genet 111:1183–1190

    Article  PubMed  CAS  Google Scholar 

  • Wellner N, Marsh JT, Savage AW, Halford NG, Shewry PR, Clare Mills EN, Belton PS (2006) Comparison of repetitive sequences derived from high molecular weight subunits of wheat glutenin, an elastomeric plant protein. Biomacromolecules 7:1096–1103

    Article  PubMed  CAS  Google Scholar 

  • Wright ER, Conticello VP (2002) Self-assembly of block copolymers derived from elastin-mimetic polypeptide sequences. Adv Drug Deliv Rev 54:1057–1073

    Article  PubMed  CAS  Google Scholar 

  • Zhang F, Boston RS (1992) Increases in binding protein (BiP) accompany changes in protein body morphology in three high-lysine mutants of maize. Protoplasma 171:142–152

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Denis Lourdin for the discussion of the triblock protein design and properties, and Peter Shewry and Paola Tosi for the critical review of the manuscript. We also thank Axelle Bouder for her technical assistance in molecular and cellular biology experiments, Brigitte Bouchet and Marie-Françoise Devaux for their assistance with confocal microscopy and fluorescence quantification, respectively. We gratefully acknowledge MESR for the post-doctoral grant of A. Saumonneau.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jacques Guéguen or Mathilde Francin-Allami.

Additional information

Communicated by F. Brandizzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saumonneau, A., Rottier, K., Conrad, U. et al. Expression of a new chimeric protein with a highly repeated sequence in tobacco cells. Plant Cell Rep 30, 1289–1302 (2011). https://doi.org/10.1007/s00299-011-1040-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-011-1040-z

Keywords

Navigation