Skip to main content
Log in

Cloning and characterization of HsfA2 from Lily (Lilium longiflorum)

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Heat shock transcription factors (Hsfs) are the terminal components of the signal transduction chain mediating the activation of genes responsive to both heat stress and a large number of chemical stressors. This paper aims to clone Hsf from lily and characterize its function by analyses of mRNA expression, transactivation activity and thermotolerance of transgenic Arabidopsis. In this study, the gene encoding HsfA2 with 1,053 bp open reading frame (ORF) was cloned by rapid amplification of cDNA ends (RACE) technique from Lilium longiflorum ‘White heaven’. Multiple alignment and phylogenetic analyses showed that the deduced protein was a novel member of the Hsf class A2. Expression analyses by RT-PCR indicated that LlHsfA2 expression was induced by heat shock and H2O2 treatment, but not by NaCl. It was also found that the expression of LlHsfA2 correlated with thermotolerance in Lilium longiflorum ‘White heaven’ and Oriental hybrid ‘Acapulco’ under heat stress. Furthermore, yeast one-hybrid assay showed that LlHsfA2 had transactivation activity. In addition, overexpression of LlHsfA2 activated the downstream genes including Hsp101, Hsp70, Hsp25.3 and Apx2 and enhanced the thermotolerance of transgenic Arabidopsis plants. Taken together, our data suggest that LlHsfA2 is a novel and functional HsfA2, involved in heat signaling pathway in lily and useful for improvement of thermotolerance in transgenic plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Baniwal SK, Bharti K, Chan KY, Fauth M, Ganguli A, Kotak S, Mishra SK, Nover L, Port M, Scharf KD (2004) Heat stress response in plants: a complex game with chaperons and more than twenty heat stress transcription factors. J Biosci 29:471–487

    Article  CAS  PubMed  Google Scholar 

  • Bharti K, von Koskull-Döring P, Bharti S, Kumar P, Tintschl-Körbitzer A, Treuter E, Nover L (2004) Tomato heat stress transcription factor HsfB1 represents a novel type of general transcription coactivator with a histone-like motif interacting with HAC1/CBP acetyltransferase-related proteins. Nucleic Acids Res 29:589–597

    Google Scholar 

  • Busch W, Wunderlich M, Schöffle F (2005) Identification of novel heat shock factor-dependent genes and biochemical pathways in Arabidopsis thaliana. Plant J 41:1–14

    Article  CAS  PubMed  Google Scholar 

  • Charng YY, Liu HC, Liu NY, Chi WT, Wang CN, Chang SH, Wang TT (2007) A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiol 143:251–262

    Article  CAS  PubMed  Google Scholar 

  • Chen GX, Asada K (1989) Ascorbate peroxidase in tea leaves: occurrence of two isozymes and the differences in their enzymatic and molecular properties. Plant Cell Physiol 30:987–998

    Google Scholar 

  • Cicero MP, Hubl ST, Harrison CJ, Littlefield O, Hardy JA, Nelson HCM (2001) The wing in yeast heat shock transcription factor (HSF) DNA-binding domain is required for full activity. Nucleic Acids Res 29:1715–1723

    Article  CAS  PubMed  Google Scholar 

  • Damberger FF, Pelton JG, Harrison CJ, Nelson HCM, Wemmer DE (1994) Solution structure of the DNA-binding domain of the heat shock transcription factor determined by multidimensional heteronuclear magnetic resonance spectroscopy. Protein Sci 3:1806–1821

    Article  CAS  PubMed  Google Scholar 

  • Harrison CJ, Bonm AA, Nelson HCM (1994) Crystal structure of the DNA binding domain of the heat shock transcription factor. Science 263:224–227

    Article  CAS  PubMed  Google Scholar 

  • Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–1858

    Article  CAS  PubMed  Google Scholar 

  • Heerklotz D, Döring P, Bonzelius F, Winkelhaus S, Nover L (2001) The balance of nuclear import and export determines the intracellular distribution of tomato heat stress transcription factor HsfA2. Mol Cell Biol 21:1759–1768

    Article  CAS  PubMed  Google Scholar 

  • Kim BH, Schöffl F (2002) Interaction between Arabidopsis heat shock transcription factor 1 and 71 kD heat shock proteins. J Exp Bot 53:371–375

    Article  CAS  PubMed  Google Scholar 

  • Kotak S, Port M, Ganguli A, Bicker F, von Köskull-Döring P (2004) Characterization of C-terminal domains of Arabidopsis heat stress transcription factors (Hsfs) and identification of a new signature combination of plant class Ahsfs with AHA and HES motifs essential for activator function and intracellular localization. Plant J 39:98–112

    Article  CAS  PubMed  Google Scholar 

  • Li CG, Chen QJ, Gao XQ, Qi BS, Chen NZ, Xu SM, Chen J, Wang XC (2005) AtHsfA2 modulates expression of stress responsive genes and enhances tolerance to heat and oxidative stress in Arabidopsis. Sci China C Life Sci 48:540–550

    Article  CAS  PubMed  Google Scholar 

  • Littlefield O, Nelson HCM (1999) A new use for the ‘wing’ of the ‘winged’ helix–turn–helix motif in the HSF-DNA crystal. Nat Struct Biol 6:464–470

    Article  CAS  PubMed  Google Scholar 

  • Lohmann C, Eggers-Schumacher G, Wunderlich M, Schoffl F (2004) Two different heat shock transcription factors regulate immediate early expression of stress genes in Arabidopsis. Mol Genet Genomics 271:11–21

    Article  CAS  PubMed  Google Scholar 

  • Lyck R, Harmening U, Höhfeld I, Scharf K-D, Nover L (1997) Intracellular distribution and identification of the nuclear localization signals of two tomato heat stress transcription factors. Planta 202:117–125

    Article  CAS  PubMed  Google Scholar 

  • Mattaj IW, Englmeier L (1998) Nucleocytoplasmic transport: the soluble phase. Annu Rev Biochem 67:265–306

    Article  CAS  PubMed  Google Scholar 

  • Mishra SK, Tripp J, Winkelhaus S, Tschiersch B, Theres K, Nover L, Scharf KD (2002) In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes Dev 16:1555–1567

    Article  CAS  PubMed  Google Scholar 

  • Morimoto RI (1998) Regulation of the heat stress transcriptional response: cross talk between family of heat stress factors, molecular chaperones, and negative regulators. Genes Dev 12:3788–3796

    Article  CAS  PubMed  Google Scholar 

  • Morimoto RI (2002) Dynamic remodeling of transcription complexes by molecular chaperones. Cell 110:281

    Article  CAS  PubMed  Google Scholar 

  • Nakai A (1999) New aspects in the vertebrate heat shock factor system: Hsf3 and Hsf4. Cell Stress Chaperones 4:86–93

    Article  CAS  PubMed  Google Scholar 

  • Nishizawa A, Yabuta Y, Yoshida E, Maruta T, Yoshimura K, Shigeoka S (2006) Arabidopsis heat shock transcription factor A2 as a key regulator in response to several type of environmental stress. Plant J 48:535–547

    Google Scholar 

  • Nover L, Scharf KD, Gagliardi D, Vergne P, Czarnecka-Verner E, Gurley WB (1996) The Hsf word: classification of plant heat stress transcription factors. Cell Stress Chaperones 1:215–223

    Article  CAS  PubMed  Google Scholar 

  • Nover L, Bharti K, Döring P, Mishra SK, Ganguli A, Scharf KD (2001) Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress Chaperones 6:177–189

    Article  CAS  PubMed  Google Scholar 

  • Ogawa D, Yamaguchi K, Nishiuchi T (2007) High-level overexpression of the Arabidopsis HsfA2 gene confers not only increased thermotolerance but also salt/osmotic stress tolerance and enhanced callus growth. J Exp Bot 58:3373–3383

    Article  CAS  PubMed  Google Scholar 

  • Panchuk II, Volkov RA, Schoffl F (2002) Heat stress and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiol 129:838–853

    Article  CAS  PubMed  Google Scholar 

  • Port M, Tripp J, Zielinski D, Weber C, Heerklotz D, Winkelhaus S, Bubla K-D, Scharf K-D (2004) Role of Hsp17.4-CII as coregulator and cytoplasmic retention factor of tomato heat stress transcription factor HsfA2. Plant Physiol 135:1457–1470

    Article  CAS  PubMed  Google Scholar 

  • Sato T, Milloshi K (2006) Thermosensitivity of restoration of male fertility and genotypic differences in formation of aberrant filaments and pistils among three male-sterile cultivars of Asiatic hybrids lily. Acta Hortic 714:67–74

    Google Scholar 

  • Scharf KD, Heider H, Höhfeld I, Lack R, Schmidt E, Nover L (1998a) The tomato Hsf tomato Hsf system: HsfA2 needs interaction with HsfA1 for efficient nuclear import and may be localized in cytoplasmic heat stress granules. Mol Cell Biol 18:2240–2251

    CAS  PubMed  Google Scholar 

  • Scharf KD, Höhfeld I, Nover L (1998b) Heat stress response and heat stress transcription factors. J Biosci 23:313–329

    Article  CAS  Google Scholar 

  • Schöffl F, Prändl R, Reindl A (1998) Regulation of the heat-shock response. Plant Physiol 117:1135–1141

    Article  PubMed  Google Scholar 

  • Schultheiss J, Kunert O, Gase U, Scharf K-D, Nover L, Rüterjans H (1996) Solution structure of the DNA-binding domain of the tomato heat stress transcription factor HSF24. Eur J Biochem 236:911–921

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Van Montagu M, Verbruggen N (2002) Small heat shock proteins and stress tolerance in plants. Biochim Biophys Acta 1577:1–9

    CAS  PubMed  Google Scholar 

  • Vierling E (1991) The roles of heat-shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 42:579–620

    Article  CAS  Google Scholar 

  • Von Koskull-Döring P, Scharf KD, Nover L (2007) The diversity of plant heat stress transcription factors. Trends Plant Sci 12:452–457

    Article  Google Scholar 

  • Vuister GW, Kim SJ, Orosz A, Marquardt J, Wu C, Bax A (1994) Solution structure of the DNA-binding domain of Drosophila heat shock transcription factor. Nature Struct Biol 1:605–614

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Vinocur B, Shoseyow O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Zhang Q, Shou HX (2009) Identification and expression analysis of OsHsfs in rice. J Zhejiang Univ Sci B 10:291–300

    Article  CAS  PubMed  Google Scholar 

  • Wu C (1995) Heat stress transcription factors. Annu Rev Cell Biol 11:441–469

    Article  CAS  Google Scholar 

  • Xing H, Wilkerson DC, Mayhew CN, Lubert EJ, Skaggs HS, Goodson ML, Hong Y, Park-Sarge O-K, Sarge KD (2005) Mechanism of hsp70i gene bookmarking. Science 307:421–423

    Article  CAS  PubMed  Google Scholar 

  • Yin H, Chen QM, Yi MF (2008) Effects of short-term heat stress on oxidative damage and responses of antioxidant system in Lilium longiflorum. Plant Growth Regul 54:45–54

    Article  CAS  Google Scholar 

  • Yokotani N, Ichikawa T, Kondou Y, Matsui M, Hirochika H, Iwabuchi M, Oda K (2008) Expression of rice heat stress transcription factor OsHsfA2e enhances tolerance to environmental stresses in transgenic Arabidopsis. Planta 227:957–967

    Article  CAS  PubMed  Google Scholar 

  • Zhang LR, Li YS, Xing D, Gao CJ (2009) Characterization of mitochondrial dynamics and subcellular localization of ROS reveal that HsfA2 alleviates oxidative damage caused by heat stress in Arabidopsis. J Exp Bot 60:2073–2091

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Wang Z, Jing YJ, Wang LL, Liu X, Liu YX, Deng X (2009) Ectopic over-expression of BhHsf1, a heat shock factor from the resurrection plant Boea hygrometrica, leads to increased thermotolerance and retarded growth in transgenic Arabidopsis and tobacco. Plant Mol Biol 71:451–467

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by National Natural Science Foundation (No. 30972024) and the ‘948’ project (No. 2008-G3) from Ministry of Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingfang Yi.

Additional information

Communicated by P. Lakshmanan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xin, H., Zhang, H., Chen, L. et al. Cloning and characterization of HsfA2 from Lily (Lilium longiflorum). Plant Cell Rep 29, 875–885 (2010). https://doi.org/10.1007/s00299-010-0873-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-010-0873-1

Keywords

Navigation