Skip to main content
Log in

Decoration of 3-glycidoxypropyltrimethoxysilane modified zinc oxide nanoparticles on the surface of polymeric beads for enhanced antibacterial and photocatalytic activity

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The present study aimed to improve the antibacterial and photocatalytic activity of zinc oxide nanoparticles (ZnO NPs) by fixing them on the surface of polymeric particles. ZnO NPs synthesized by microwave-assisted gel combustion method were decorated on the surface of polymeric microspheres using 3-glycidoxypropyl trimethoxy silane coupling agent and characterized by XRD, FTIR, FESEM-EDX, TEM, and thermal analyses. The synthesized composite material was investigated for antibacterial and photocatalytic activity, in comparison with an equivalent amount of ZnO NPs. Results showed the formation of a hexagonal, wurtzite phase of ZnO with 40 nm particle size. The ZnO-decorated composite material was formed as uniform microspheres with 1400 nm diameter and − 23.3 mV zeta potential, containing 10% w/w ZnO NPs. Time-kill assays showed increased antibacterial activity of the composite material against Staphylococcus aureus and Pseudomonas aeruginosa. Both ZnO NPs and the composite material were more potent against gram-positive Staphylococcus aureus. The photocatalytic activity was also significantly improved; the composite material showed potent adsorption and photocatalytic activity for removing methylene blue from its aqueous solution. It can be concluded that decoration of the silane coupling agent-modified ZnO NPs on the surface of polymeric microspheres was an efficient strategy to enhance the antibacterial and photocatalytic activity of ZnO NPs by reducing the agglomeration and increasing the production of reactive oxygen species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hassabo AA, Ibrahim EI, Ali BA, Emam HE (2022) Anticancer effects of biosynthesized Cu2O nanoparticles using marine yeast. Biocatal Agric Biotechnol 1(39):102261

    Article  Google Scholar 

  2. Emami-Karvani Z, Chehrazi P (2011) Antibacterial activity of ZnO nanoparticle on gram-positive and gram-negative bacteria. Afr j microbiol res 5(12):1368–1373

    CAS  Google Scholar 

  3. Pourmoslemi S, Seif F, Mahjub R (2020) Enhanced antibacterial activity of Ag-doped ZnS nanoparticles synthesised by a microwave-assisted polyol method. Mater Res Innov, 1–5.

  4. Emam HE, Mikhail MM, El-Sherbiny S, Nagy KS, Ahmed HB (2020) Metal-dependent nano-catalysis in reduction of aromatic pollutants. Environ Sci Pollut Res 27:6459–6475

    Article  CAS  Google Scholar 

  5. Pourmoslemi S, Mohammadi A, Kobarfard F, Amini M (2016) Photocatalytic removal of doxycycline from aqueous solution using ZnO nano-particles: a comparison between UV-C and visible light. Water Sci Technol 74(7):1658–1670

    Article  CAS  PubMed  Google Scholar 

  6. Li M, Tang X, Gao X, Zhang H, Cai S, Shan S (2021) Nano ZnO-decorated corn stalk for three-dimensional composite filter with efficient-ly antimicrobial action. J Market Res 12:444–454

    Google Scholar 

  7. Javed R, Zia M, Naz S, Aisida SO, Ain NU, Ao Q (2020) Role of capping agents in the application of nanoparticles in biomedicine and en-vironmental remediation: recent trends and future prospects. J Nanobiotech 18(1):1–15

    Article  Google Scholar 

  8. Mirzaei A, Yerushalmi L, Chen Z, Haghighat F (2018) Photocatalytic degradation of sulfamethoxazole by hierarchical magnetic ZnO@ g-C3N4: RSM optimization, kinetic study, reaction pathway and toxicity evaluation. J Hazard Mater 359:516–526

    Article  CAS  PubMed  Google Scholar 

  9. Di Mauro A, Farrugia C, Abela S, Refalo P, Grech M, Falqui L et al (2020) Ag/ZnO/PMMA nanocomposites for efficient water reuse. ACS Appl Bio Mater 3(7):4417–4426

    Article  PubMed  Google Scholar 

  10. Rahman MM (2020) Polyurethane/zinc oxide (PU/ZnO) composite—synthesis, protective property and application. Polymers 12(7):1535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ahmed HB, Emam HE (2020) Seeded growth core-shell (Ag–Au–Pd) ternary nanostructure at room temperature for potential water treatment. Polym Testing 1(89):106720

    Article  Google Scholar 

  12. Emam HE, Ahmed HB, Abdelhameed RM (2021) Melt intercalation technique for synthesis of hetero-metallic@ chitin bio-composite as recyclable catalyst for prothiofos hydrolysis. Carbohyd Polym 15(266):118163

    Article  Google Scholar 

  13. Mallakpour S, Madani M (2015) A review of current coupling agents for modification of metal oxide nanoparticles. Prog Org Coat 86:194–207

    Article  CAS  Google Scholar 

  14. Zhao J, Milanova M, Warmoeskerken MM, Dutschk V (2012) Surface modification of TiO2 nanoparticles with silane coupling agents. Col-loids Surf A: Physicochem Eng Asp 413:273–279

    Article  CAS  Google Scholar 

  15. Iqbal D, Rechmann J, Sarfraz A, Altin A, Genchev G, Erbe A (2014) Synthesis of ultrathin poly (methyl methacrylate) model coatings bound via organosilanes to zinc and investigation of their delamination kinetics. ACS Appl Mater Interfaces 6(20):18112–18121

    Article  CAS  PubMed  Google Scholar 

  16. Ghorbani F, Pourhaghgouy M, Mohammadi-hafshehjani T, Zamanian A (2020) Effect of silane-coupling modification on the performance of chitosan-poly vinyl alcohol-hybrid scaffolds in bone tissue engineering. SILICON 12(12):3015–3026

    Article  CAS  Google Scholar 

  17. Jia Z, Hong R (2021) Anticorrosive and photocatalytic properties research of epoxy-silica organic–inorganic coating. Colloids Surf, A 622:126647

    Article  CAS  Google Scholar 

  18. Bosacka A, Zienkiewicz-Strzalka M, Wasilewska M, Derylo-Marczewska A, Podkościelna B (2021) Physicochemical and adsorption characteristics of divinylbenzene-co-triethoxyvinylsilane microspheres as materials for the removal of organic compounds. Molecules 26(8):2396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Saladino GM, Kakadiya R, Ansari SR, Teleki A, Toprak MS (2023) Magnetoresponsive fluorescent core–shell nanoclusters for biomedical applications. Nanoscale Adv 5(5):1323–1330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Karade VC, Sharma A, Dhavale RP, Dhavale RP, Shingte SR, Patil PS, Kim JH, Zahn DR, Chougale AD, Salvan G, Patil PB (2021) APTES monolayer coverage on self-assembled magnetic nanospheres for controlled release of anticancer drug Nintedanib. Sci Rep 11(1):5674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Orbay S, Kocaturk O, Sanyal R, Sanyal A (2022) Molecularly imprinted polymer-coated inorganic nanoparticles: fabrication and biomedical applications. Micromachines 13(9):1464

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gao R, Zhang J, He X, Chen L, Zhang Y (2010) Selective extraction of sulfonamides from food by use of silica-coated molecularly imprinted polymer nanospheres. Anal Bioanal Chem 398:451–461

    Article  CAS  PubMed  Google Scholar 

  23. Turan E, Şahin F (2016) Molecularly imprinted biocompatible magnetic nanoparticles for specific recognition of ochratoxin A. Sens Actuators, B Chem 1(227):668–676

    Article  Google Scholar 

  24. Pourmoslemi S, Mohammadi A, Kobarfard F, Assi N (2016) Photocatalytic removal of two antibiotic compounds from aqueous solutions using ZnO nanoparticles. Desalin Water Treat 5(31):14774–14784

    Article  Google Scholar 

  25. Ma J, Duan L, Lu J, Lyu B, Gao D, Wu X (2017) Fabrication of modified hydrogenated castor oil/GPTMS-ZnO composites and effect on UV resistance of leather. Sci Rep 7(1):1–10

    Google Scholar 

  26. Piccaglia M, Castanharo JA, Oliveira MGD, Costa MADS (2018) Influence of the fraction of comonomers and diluents on the preparation of polymeric microspheres based on poly (methacrylic acid-co-divinylbenzene) obtained by precipitation polymerization. Mater Res 22:e20170909

    Google Scholar 

  27. Wang F, Liang J, Tang Q, Chen C, Chen Y (2014) Preparation and performance of thermal insulation energy saving coating materials for exterior wall. J Nanosci Nanotechnol 14(5):3861–3867

    Article  CAS  PubMed  Google Scholar 

  28. Liu J, Ye L, Wooh S, Kappl M, Steffen W, Butt H Jr (2019) Optimizing hydrophobicity and photocatalytic activity of PDMS-coated titani-um dioxide. ACS Appl Mater Interfaces 11(30):27422–27425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gabrielli L, Connell L, Russo L, Jiménez-Barbero J, Nicotra F, Cipolla L et al (2014) Exploring GPTMS reactivity against simple nucleo-philes: chemistry beyond hybrid materials fabrication. RSC Adv 4(4):1841–1848

    Article  CAS  Google Scholar 

  30. Pehkonen SO, Yuan S (2018) General background of sol-gel coatings for corrosion mitigation. In: Interface science and technology, vol 23, Elsevier; Amsterdam, pp 63–113

  31. Ivanković M, Brnardić I, Ivanković H, Huskić M, Gajović A (2009) Preparation and properties of organic–inorganic hybrids based on poly (methyl methacrylate) and sol–gel polymerized 3-glycidyloxypropyltrimethoxysilane. Polymer 50(12):2544–2550

    Article  Google Scholar 

  32. Ren G, Hu D, Cheng EW, Vargas-Reus MA, Reip P, Allaker RP (2009) Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents 33(6):587–590

    Article  CAS  PubMed  Google Scholar 

  33. Tichapondwa SM, Newman JP, Kubheka O (2020) Effect of TiO2 phase on the photocatalytic degradation of methylene blue dye. Phys Chem Earth, Parts A/B/C 1(118):102900

    Article  Google Scholar 

  34. Alkaykh S, Mbarek A, Ali-Shattle EE (2020) Photocatalytic degradation of methylene blue dye in aqueous solution by MnTiO3 nanoparticles under sunlight irradiation. Heliyon. 6(4):e03663

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mohammadi A, Pourmoslemi S (2018) Enhanced photocatalytic degradation of doxycycline using a magnetic polymer-ZnO composite. Water Sci Technol 2017(3):791–801

    Article  PubMed  Google Scholar 

  36. Bhujel R, Rai S, Deka U, Sarkar G, Biswas J, Swain BP (2021) Bandgap engineering of PEDOT: PSS/rGO a hole transport layer for SiNWs hybrid solar cells. Bull Mater Sci 44:1–1

    Article  Google Scholar 

  37. Puma GL, Bono A, Krishnaiah D, Collin JG (2008) Preparation of titanium dioxide photocatalyst loaded onto activated carbon support us-ing chemical vapor deposition: a review paper. J Hazard Mater 157(2–3):209–219

    Article  Google Scholar 

  38. Majumder T, Mondal SP (2019) Graphene quantum dots as a green photosensitizer with carbon-doped ZnO nanorods for quantum-dot-sensitized solar cell applications. Bull Mater Sci 42:1–5

    Article  Google Scholar 

Download references

Funding

This work was supported by the Vice-Chancellor for Research and Technology, Hamadan University of Medical Sciences, under [grant number 9904242618].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shabnam Pourmoslemi.

Ethics declarations

Conflict of interest

Authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourmoslemi, S., Eghbalian, F. & Mahboobian, M.M. Decoration of 3-glycidoxypropyltrimethoxysilane modified zinc oxide nanoparticles on the surface of polymeric beads for enhanced antibacterial and photocatalytic activity. Polym. Bull. (2024). https://doi.org/10.1007/s00289-024-05308-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00289-024-05308-8

Keywords

Navigation