Skip to main content
Log in

Synthesis of a novel pH-sensitive hydrogel based on poly(γ-glutamic acid) crosslinked with urea

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Chemical hydrogel based on poly(γ-glutamic acid) obtained from Bacillus licheniformis (ATCC-9945a) and using urea as a crosslinking agent was synthesized. The hydrogel was characterized by infrared spectroscopy, scanning electron microscopy, thermal analysis and swelling capacity. The crosslinking of the biopolymer was evidenced by changes in the intensities of signals in the infrared spectrum corresponding to amide groups, with respect to the spectrum of the pure biopolymer. Moreover, a porous structure, characteristic of hydrogels, with average pore size of 80 ± 31 μm was confirmed. The hydrogel showed a glass transition temperature of 144.5 °C and a decomposition temperature of 219 °C. The swelling ratio of the hydrogel increased with the increase of contact time with the swelling medium and pH, presenting values at equilibrium of 6.6, 13.4 and 15.3 at pH 3.6, 7.4 and 10, respectively; meanwhile, little influence of temperature on the swelling of the material was observed. Moreover, through the use of mathematical models, it is deduced that the swelling of the hydrogel in the buffer solutions occurs through lower Fickian and Fickian type mechanisms, and in deionized water an anomalous mechanism predominates.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hamidi M, Azadi A, Rafiei P (2008) Hydrogel nanoparticles reviews in drug delivery. Adv Drug Del 60(15):1638–1649. https://doi.org/10.1016/j.addr.2008.08.002

    Article  CAS  Google Scholar 

  2. Rodríguez DE, Romero-García J, Ramirez-Vargas E, Ledezma-Pérez AS, Arias-Marín E (2006) Synthesis and swelling characteristics of semi-interpenetrating polymer network hydrogels composed of poly(acrylamide) and poly((-glutamic acid). Mater Lett 60:1390–1393. https://doi.org/10.1016/j.matlet.2005.11.033

    Article  CAS  Google Scholar 

  3. Abu Elella MH, Goda ES, Gab-Allah MA, Hong SE, Pandit B, Lee S, Gamal H, Rehman A, Yoon KR (2020) Xanthan gum-derived materials for applications in environment and eco-friendly materials: a review. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2020.104702

    Article  Google Scholar 

  4. Goda ES, Abu Elella MH, Sohail M, Singu BS, Pandit B, El Shafey AM, Aboraia AM, Gamal H, Hong SE, Yoon KR (2021) N-methylene phosphonic acid chitosan/graphene sheets decorated with silver nanoparticles as green antimicrobial agents. Int J Biol Macromol 182:680–688. https://doi.org/10.1016/j.ijbiomac.2021.04.024

    Article  CAS  PubMed  Google Scholar 

  5. Akhtar MF, Hanif M, Ranjha NM (2016) Methods of synthesis of hydrogels … A review. Saudi Pharmaceutical Journal 24:554–559. https://doi.org/10.1016/j.jsps.2015.03.022

    Article  PubMed  Google Scholar 

  6. Abu Elella MH, Goda ES, Abdallah HM, Shalan AE, Gamal H, Yoon KR (2020) Innovative bactericidal adsorbents containing modified xanthan gum/montmorillonite nanocomposites for wastewater treatment. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2020.11.065

    Article  PubMed  Google Scholar 

  7. Elgamal AM, Abu Elella MH, Saad GR, Abd El-Ghany NA (2022) Synthesis, characterization and swelling behavior of high-performance antimicrobial biocompatible copolymer based on carboxymethyl xanthan. Mater Today Commun 33:104209. https://doi.org/10.1016/j.mtcomm.2022.104209

    Article  CAS  Google Scholar 

  8. Abu Elella MH, Hanna DH, Mohamed RR, Sabaa MW (2021) Synthesis of xanthan gum/trimethyl chitosan interpolyelectrolyte complex as pH-sensitive protein carrier. Polym Bull. https://doi.org/10.1007/s00289-021-03656-3

    Article  Google Scholar 

  9. Chatterjee S, Chi-leung P (2021) Review of applications and future prospects of stimuli-responsive hydrogel based on thermo-responsive biopolymers in drug delivery systems. Polymers 13:2086–2101. https://doi.org/10.3390/polym13132086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Giubertoni G, Burla F, Bakker HJ, Koenderink GH (2020) Connecting the stimuli-responsive rheology of biopolymer hydrogels to underlying hydrogen-bonding interactions. Macromolecules 53:10503–10513. https://doi.org/10.1021/acs.macromol.0c01742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Abdel-Aziz MM, Abu Elella MH, Mohamed RR (2019) Green synthesis of quaternized chitosan/silver nanocomposites for targeting mycobacterium tuberculosis and lung carcinoma cells (A-549). Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2019.09.096

    Article  PubMed  Google Scholar 

  12. Ngwuluka NC, Abu-Thabit NY, Uwaezuoke OJ, Erebor JO, Ilomuanya MO, Mohamed RR, Ebrahim NA (2021) Natural polymers in micro-and nanoencapsulation for therapeutic and diagnostic applications: part II-polysaccharides and proteins. Nano-and Microencaps-Tech Appl. https://doi.org/10.5772/intechopen.88590

    Article  Google Scholar 

  13. Ngwuluka NC, Abu-Thabit NY, Uwaezuoke OJ, Erebor JO, Ilomuanya MO, Mohamed RR, Ebrahim NA (2021) Natural polymers in micro-and nanoencapsulation for therapeutic and diagnostic applications: part I: lipids and fabrication techniques. Nano Microencapsul Tech Appl. https://doi.org/10.5772/intechopen.88590

    Article  Google Scholar 

  14. Abu Elella MH, Abdel-Aziz MM, Abd El-Ghany NA (2021) Synthesis of a high-performance antimicrobial o-quaternized alginate – a promising potential antimicrobial agent. Cellulose Chem Technol 55(1–2):75–86

    Article  Google Scholar 

  15. Nair P, Navale GR, Dharne MS (2021) Poly-gamma-glutamic acid biopolymer: a sleeping giant with diverse applications and unique opportunities for commercialization. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-021-01467-0

    Article  Google Scholar 

  16. Zhang K, Wu J, Zhang W, Sh Yan J, Ding X, Chen L, Cui JY (2018) In situ formation of hydrophobic clusters to enhance mechanical performance of biodegradable poly(L-glutamic acid)/poly(ε-caprolactone) hydrogel towards meniscus tissue engineering. J Mater Chem B 6:7822–7833. https://doi.org/10.1039/C8TB01453A

    Article  CAS  PubMed  Google Scholar 

  17. Nie G, Hong K, Zhang E, Liu N, Wang M, Wang L, Zang Y (2020) Fabrication of a porous chitosan/poly-(γ-glutamic acid) hidrogel with a high absorption capacity by electrostatic contacts. Int J Biol Macromol 159:986–994. https://doi.org/10.1016/j.ijbiomac.2020.05.112

    Article  CAS  PubMed  Google Scholar 

  18. Kwiecien I, Niewolik D, Ekere AI, Gupta A, Radecka I (2020) Synthesis of hydrogels made of poly-γ-glutamic acid (γ-PGA) for potential applications as probiotic-delivery vehicles. Appl Sci 10(8):2787. https://doi.org/10.3390/app10082787

    Article  CAS  Google Scholar 

  19. Dou Ch, Li Z, Gong J, Li Q, Qiao Ch, Zhang J (2021) Bio-based poly (γ-glutamic acid) hydrogels reinforced with bacterial cellulose nanofibers exhibiting superior mechanical properties and cytocompatibility. Int J Biol Macromol 170:354–365. https://doi.org/10.1016/j.ijbiomac.2020.12.148

    Article  CAS  PubMed  Google Scholar 

  20. Yang R, Wang X, Liu S, Zhang W, Wang P, Liu X, Ren Y, Tan X, Chi B (2020) Bioinspired poly (γ-glutamic acid) hydrogels for enhanced chondrogenesis of bone marrow-derived mesenchymal stem cells. Int J Biol Macromol 142:332–344. https://doi.org/10.1016/j.ijbiomac.2019.09.104

    Article  CAS  PubMed  Google Scholar 

  21. Li Z, He G, Hua J, Wu M, Guo W, Gong J, Zhang J, Qiaoc Ch (2017) Preparation of γ-PGA hydrogels and swelling behaviors in salt solutions with different ionic valence numbers. R S Chem Adv 7:11085–11093. https://doi.org/10.1039/C6RA26419K

    Article  CAS  Google Scholar 

  22. Gonzales D, Fan K, Sevoian M (1996) Synthesis and swelling characterizations of a poly(gamma-glutamic acid) hydrogel. J Polym Sci A Polym Chem 34:2019–2027. https://doi.org/10.1002/(SICI)1099-0518(19960730)34:10%3c2019::AIDPOLA19%3e3.0.CO;2-K

    Article  CAS  Google Scholar 

  23. Murakami S, Aoki N (2006) Bio-based hydrogels prepared by cross-linking of microbial poly (γ-glutamic acid) with various saccharides. Biomacromol 7:2122–2127. https://doi.org/10.1021/bm0600264

    Article  CAS  Google Scholar 

  24. Liu L, Mo H, Wei S, Raftery D (2012) Quantitative analysis of urea in human urine and serum by 1H nuclear magnetic resonance. Analyst 137:595–600. https://doi.org/10.1039/C2AN15780B

    Article  CAS  PubMed  Google Scholar 

  25. Rodríguez-Félix DE, Castillo-Ortega MM, Real-Félix D, Romero-García J, Ledezma-Pérez AS, Rodríguez-Félix F (2011) Synthesis and swelling properties of pH- and temperature sensitive interpenetrating polymer networks composed of poly(acrylamide) and poly(c-glutamic acid). J Appl Polym Sci 119:3531–3537. https://doi.org/10.1002/app.33006

    Article  CAS  Google Scholar 

  26. Tasdelen B, Kayaman N, Güven O, Baysal BM (2004) pH-thermoreversible hydrogels. I. Synthesis and characterization of poly(N-isopropylacrylamide/maleic acid) copolymeric hydrogels. Radiat Phys Chem 69:303–310. https://doi.org/10.1016/j.radphyschem.2003.07.004

    Article  CAS  Google Scholar 

  27. Rodríguez-Félix DE, Pérez-Caballero D, del Castillo-Castro T, Castillo-Ortega MM, Garmendía-Diago Y, Alvarado-Ibarra J, Plascencia-Jatomea M, Ledezma-Pérez AS, Burruel-Ibarra SE (2022) Chitosan hydrogels chemically crosslinked with L-glutamic acid and their potential use in drug delivery. Polym Bull. https://doi.org/10.1007/s00289-022-04152-y

    Article  Google Scholar 

  28. Rodríguez-Rodríguez R, García-Carvajal ZY, Jiménez-Palomar I, Jiménez-Avalos JA, Espinosa-Andrews H (2019) Development of gelatin/chitosan/PVA hydrogels: thermal stability, water state, viscoelasticity, and cytotoxicity assays. J APPL POLYM SCI. https://doi.org/10.1002/APP.47149

    Article  Google Scholar 

  29. Pereira AES, Sandoval-Herrera IE, Zavala-Betancourt SA, Oliveira HC, Ledezma-Pérez AS, Romero J, Fraceto LF (2017) γ-Polyglutamic acid/chitosan nanoparticles for the plant growth regulator gibberellic acid: characterization and evaluation of biological activity. Carbohyd Polym 157:1862–1873. https://doi.org/10.1016/j.carbpol.2016.11.073

    Article  CAS  Google Scholar 

  30. Rodríguez-Félix DE, Pérez-Martínez CJ, Castillo-Ortega MM, Pérez-Tello M, Romero-García J, Ledezma-Pérez AS, Del Castillo-Castro T, Rodríguez-Félix F (2012) pH- and temperature-sensitive semi-interpenetrating network hydrogels composed of poly(acrylamide) and poly(γ-glutamic acid) as amoxicillin controlled-release system. Polym Bull 68:197–207. https://doi.org/10.1007/s00289-011-0549-1

    Article  CAS  Google Scholar 

  31. Wang X, Gou C, Gao C et al (2021) Production of a novel nontoxic γ-PGA/casein composite hydrogel using MTG and optimization by response Surface methodology. Grain Oil Sci Technol 4(2):71–80. https://doi.org/10.1016/j.gaost.2021.04.001

    Article  CAS  Google Scholar 

  32. Yang N, Wang Y, Zhang Q, Chen L, Zhao Y (2017) γ-Polyglutamic acid mediated crosslinking PNIPAAm-based thermo/pH-responsive hydrogels for controlled drug reléase. Polym Degrad Stab 144:53–61. https://doi.org/10.1016/j.polymdegradstab.2017.07.028

    Article  CAS  Google Scholar 

  33. Ho GH, Ho TI, Hsieh KH, Su YC, Lin PY, Yang J, Yang KH, Yang SC (2006) γ-polyglutamic acid produced by bacillus subtilis (natto): structural characteristics, chemical properties and biological functionalities. J Chin Chem Soc 53:1363–1384. https://doi.org/10.1002/jccs.200600182

    Article  CAS  Google Scholar 

  34. Hua J, Li Z, Xia W, Yang N, Gong J, Zhang J, Qiao C (2016) Preparation and properties of EDC/NHS mediated crosslinking poly (gamma-glutamic acid)/epsilon-polylysine hydrogels. Mater Sci Eng, C 61:879–892. https://doi.org/10.1016/j.msec.2016.01.001

    Article  CAS  Google Scholar 

  35. Kunioka M, Choi HJ (1996) Preparation conditions and swelling equilibria of biodegradable hydrogels prepared from microbial poly(γ-glutamic acid) and poly(ε- lysine). J Environ Polym Degrad 4(2):123–129. https://doi.org/10.1007/bf02074873

    Article  CAS  Google Scholar 

  36. Kwiecien I, Niewolik D, Itohowo A, Gupta A, Radecka I (2020) Synthesis of hydrogels made of poly-γ-glutamic acid (γ-pga) for potential applications as probiotic-delivery vehicles. Appl Sci 10(8):2787–2801. https://doi.org/10.3390/app10082787

    Article  CAS  Google Scholar 

  37. Wang Y, He G, Li Z, Hua J, Wu M, Gong J, Zhang J, Ban LT, Huang L (2018) Novel biological hydrogel: swelling behaviors study in salt solutions with different ionic valence number. Polymers 10:112. https://doi.org/10.3390/polym10020112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zeng W, Hu WK, Li H, Jing YH, Kang H, Jiang Q, Zhang C (2014) Preparation and characterization of poly(γ-glutamic acid) hydrogels as potential tissue engineering scaffolds. Chin J Polym Sci 32(11):1507–1514. https://doi.org/10.1007/s10118-014-1536-4

    Article  CAS  Google Scholar 

  39. González N, Prin JL, Benítez JL, Ramírez A, García A, Ramirez M, Sabino M, de Gáscue BR (2012) Estudio de la cinética de difusión en hidrogeles sintetizados a partir de acrilamida-co-ácido acrílico con turba y almidón vía calentamiento convencional y bajo radiación microondas. Rev LatinAm Metal Mat 32(1):136–144

    Google Scholar 

  40. Benítez JL, Lárez C, Rojas B (2015) Cinética de absorción y transporte del agua en hidrogeles sintetizados a partir de acrilamida y anhídrido maleico. Rev LatinAm Metal Mat 35(2):242–253

    Google Scholar 

  41. Gierszewska-Drużyńska M, Ostrowska-Czubenko J (2012) Mechanism of water diffusion into noncrosslinked and ionically crosslinked chitosan membranes. Prog Chem Appl Chitin Deriv 17:59–66

    Google Scholar 

  42. Caykara T (2004) Effect of maleic acid content on network structure and swelling properties of poly(N-isopropylacrylamide-comaleic acid) polyelectrolyte hydrogels. J Appl Polym Sci 92:763–769. https://doi.org/10.1002/app.20032

    Article  CAS  Google Scholar 

  43. Tasdelen B, Kayaman-Apohan N, Guven O, Baysal BM (2004) pH-thermoreversible hydrogels. I. Synthesis and characterization of poly(N-isopropylacrylamide/maleic acid) copolymeric hydrogels. Radiat Phys Chem 69:303–310. https://doi.org/10.1016/j.radphyschem.2003.07.004

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Y. Garmendía-Diago acknowledges CONACYT (Consejo Nacional de Ciencia y Tecnología, México) for the financial support provided for her graduate studies during this study.

Author information

Authors and Affiliations

Authors

Contributions

YG-D. Methodology, Investigation, Formal Analysis, Data curation, Software, Writing- Original draft preparation, Writing- Reviewing and Editing. DER-F*. Project administration, Conceptualization, Methodology, Investigation, Writing- Reviewing and Editing. DP-C, EB-H. Investigation, Data curation, MMC-O, TDC-C, HSO, JMQ-C, MP-J, FR-F, ASL-P. Investigation, Supervision, Validation.

Corresponding author

Correspondence to D. E. Rodríguez-Félix.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest of any kind when submitting this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garmendía-Diago, Y., Rodríguez-Félix, D.E., Pérez-Caballero, D. et al. Synthesis of a novel pH-sensitive hydrogel based on poly(γ-glutamic acid) crosslinked with urea. Polym. Bull. 81, 3725–3741 (2024). https://doi.org/10.1007/s00289-023-04892-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04892-5

Keywords

Navigation