Skip to main content
Log in

Swelling, thermal and mechanical properties of NIPAM-based terpolymeric hydrogel

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Thermoresponsive hydrogels based on N-isopropylacrylamide, N-tertiary butylacrylamide (NTBA) and methacrylamide (MAAm) have been prepared by free radical copolymerization in water–dioxane mixture. Fourier transform infrared spectroscopy confirmed the presence of all monomers in the hydrogel system. Scanning electron microscopy revealed that the hydrogel having higher amount of NTBA had more smooth structure compared to others. Differential scanning calorimetry results showed that the free and interfacial water decreased but bound water increased with NTBA content in the hydrogel. Dynamic mechanical analysis results revealed increased storage modulus for the hydrogel having higher content of N-tertiarybutylacrylamide. Swelling studies of the hydrogels at different temperatures showed that all samples followed Fickian type of diffusion. The diffusion coefficient increases with increase in MAAm proportion in the hydrogel. The hydrogels were used in concentrating aqueous bovine serum albumin solution. The separation efficiency of hydrogels having higher content of MAAm were found up to 80 % at 5 °C but it decreased upon raising the temperature up to 30 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Bajpai AK, Bajpai J, Saini R, Gupta R (2011) Responsive polymers in biology and technology. Polym Rev 51:53–97

    Article  CAS  Google Scholar 

  2. Shereen MA, Yousef MAH, Mohammad M (2011) Versatile pectin grafted poly (N-isopropylacrylamide); modulated targeted drug release fares. J Macromol Sci Part A Pure Appl Chem 48:493–502

    Article  Google Scholar 

  3. Jiang B, Larson JC, Drapala PW, Perez-Luna VH, Kang-Mieler JJ, Brey EM (2012) Investigation of lysine acrylate containing poly(N-isopropylacrylamide) hydrogels as wound dressings in normal and infected wounds. J Biomed Mater Res Part B 100B:668–676

    Article  CAS  Google Scholar 

  4. Nelson DM, Ma Z, Leeson CE, Wagner WR (2012) Extended and sequential delivery of protein from injectable thermoresponsive hydrogels. J Biomed Mater Res Part A 100A:776–785

    Article  CAS  Google Scholar 

  5. Dong J, Chen L, Ding Y, Han W (2005) Swelling and mechanical properties of a temperature-sensitive dextran hydrogel and its bioseparation applications. Macromol Chem Phys 206:1973–1980

    Article  CAS  Google Scholar 

  6. Stuart MAC, Huck WTS, Genzer J, Muller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S (2010) Emerging applications of stimuli-responsive polymer materials. Nat Mater 9:101–113

    Article  Google Scholar 

  7. Kumar A, Srivastava A, Galev IY, Mattiason B (2007) Smart polymers: physical forms and bioengineering applications. Prog Polym Sci 32:1205–1237

    Article  CAS  Google Scholar 

  8. Hirokawa Y, Tanaka T (1984) Volume phase transition in a nonionic gel. J Chem Phys 81:6379–6380

    Article  Google Scholar 

  9. Zhuang Y, Wang G, Yang H, Zhu Z, Fu J, Song W, Zhao H (2005) Radiation polymerization and concentration separation of P(NIPA-co-AMPS) hydrogels. Polym Int 54:617–621

    Article  CAS  Google Scholar 

  10. Barrosoa T, Viveirosa R, Coelho M, Casimiro T, Botelho do Rego AM, Aguiar-Ricardoa A (2012) Influence of poly(N-isopropylacrylamide) and poly(N, N′-diethyl acrylamide) coatings on polysulfone/polyacrylonitrile-based membranes for protein separation. Polym Adv Technol 23:1381–1393

    Article  Google Scholar 

  11. Shekhar S, Mukherjee M, Sen AK (2012) Synthesis, characterization and protein separation efficiency of N-isopropylacrylamide-co-N-tertiary butylacrylamide-co-acrylamide based hydrogels. Iran Polym J 21(12):895–905

    Article  CAS  Google Scholar 

  12. Shekhar S, Mukherjee M, Sen AK (2012) Studies on thermal and swelling properties of Poly (NIPAM-co-2-HEA) based hydrogels. Adv Mat Res 1(4):267–282

    Google Scholar 

  13. Shekhar S, Mukherjee M, Sen AK (2014) Synthesis and characterization of thermoresponsive terpolymer for protein separation. Int J Polym Mater Polym Biomater 63:389–397

    Article  CAS  Google Scholar 

  14. Barati A, Norouzi H, Sharafoddinzadeh S, Davarnejad R (2010) Swelling kinetics modeling of cationic methacrylamide-based hydrogels. World Appl Sci J 11(11):1336–1341

    CAS  Google Scholar 

  15. Den Bulcke AIV, Bogdanov B, Rooze ND, Schacht EH, Cornelissen M, Berghmans H (2000) Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules 1:31–38

    Article  Google Scholar 

  16. Ni C, Zhu XX (2004) Synthesis and swelling behavior of thermosensitive hydrogels based on N-substituted acrylamides and sodium acrylate. Eur Polym J 40:1075–1080

    Article  CAS  Google Scholar 

  17. Hertle Y, Zeiser M, Hasenohrl C, Busch P, Hellweg T (2010) Responsive P(NIPAM-co-NTBA) Flory–Rehner description of swelling behaviour. Colloid Polym Sci 288:1047–1059

    Article  CAS  Google Scholar 

  18. Okubo T (1988) Surface tension of synthetic polyelectrolyte solutions at air–water interface. J Colloid Interface Sci 125:386–389

    Article  CAS  Google Scholar 

  19. Van Dyke JD, Kasperski KL (1993) Thermogravimetric study of polyacrylamide with evolved gas analysis. J Polym Sci Part A Polym Chem 31:1807–1823

    Article  Google Scholar 

  20. Katime I, Apodaca ED, Mendizabal E, Puig JE (2000) Acrylic acid/methyl methacrylate hydrogels. i. effect of composition on mechanical and thermodynamic properties. J Macromol Sci Part A 37:307–321

    Article  Google Scholar 

  21. Yu C, Liu YF, Tang HL, Tan HM (2010) Study of carboxymethyl chitosan-based polyampholyte superabsorbent polymer (part II): investigating the state of water in CMCTS-g-(PAA-co-PTMAAC) hydrogel. Iran Polym J 19(6):417–425

    CAS  Google Scholar 

  22. Li W, Xue F, Cheng R (2005) States of water in partially swollen poly (vinyl alcohol) hydrogels. Polymer 46:12026–12031

    Article  CAS  Google Scholar 

  23. Cursaru B, Stanescu P, Teodorescu M (2010) The states of water in hydrogels synthesized from diepoxy-terminated poly(ethylene glycol)s and aliphatic polyamines. UPB Sci Bull Ser B 72:99–114

    CAS  Google Scholar 

  24. Abraham AA, Sen AK (2010) Thermal and swelling studies of hydrophobically modified poly(acrylamide) hydrogels. J Appl Polym Sci 117:2795–2802

    CAS  Google Scholar 

  25. Kim SJ, Park SJ, Kim SI (2003) Synthesis and characteristics of interpenetrating polymer network hydrogels composed of poly (vinyl alcohol) and poly (N-isopropylacrylamide). React Funct Polym 55:61–67

    Article  CAS  Google Scholar 

  26. Wicks ZW, Jones FN, Pappas SP (eds) (1999) Organic coating science and technology, 2nd edn. Wiley, NewYork

  27. Lee J, Macosko CW, Urry DWJ (2001) Phase transition and elasticity of protein-based hydrogels. Biomater Sci Polym Ed 12(2):229–242

    Article  Google Scholar 

  28. Zhu D, Lu M, Guo J, Liang L, Lan Y (2012) Effect of adamantyl methacrylate on the thermal and mechanical properties of thermosensitive poly(N-isopropylacrylamide) hydrogels. J Appl Polym Sci 124:155–163

    Article  CAS  Google Scholar 

  29. Bader RA (2008) Synthesis and viscoelastic characterization of novel hydrogels generated via photopolymerization of 1,2-epoxy-5-hexene modified poly(vinyl alcohol) for use in tissue replacement. Acta Biomater 4:967–975

    Article  CAS  Google Scholar 

  30. Milasinovic N, Knezwvic-Jugovic Z, Milosavljevic N, Filipovic J, Kalagasidis M (2012) Controlled release of lipase from Candida rugosa loaded into hydrogels of N-isopropylacrylamide and itaconic acid. Int J Pharm 436:332–340

    Article  CAS  Google Scholar 

  31. Wei QB, Luo YL, Gao LJ, Wang Q, Wang DJ (2011) Synthesis, characterization and swelling kinetics of thermoresponsive PAM-co-PVA/PVP semi_IPN hydrogels. Polym Sci Ser A 53:707–714

    Article  CAS  Google Scholar 

  32. Bajpai SK, Singh S (2006) Analysis of swelling behavior of poly (methacrylamide-co-methacrylic acid) hydrogels and effect of synthesis conditions on the water uptake. React Funct Polym 66:431–440

    Article  CAS  Google Scholar 

  33. Chen X, Zhao S, Zhai L (2005) Moisture absorption and diffusion characterization of molding compound. J Electro Pack 127:460–465

    Article  Google Scholar 

  34. Pjanovic R, Boskovic-Vragolovic N, Veljkovic-Giga J, Garic-Grulovic R, Pejanovic S, Bugarski B (2010) Diffusion of drugs from hydrogels and liposomes as drug carriers. J Chem Technol Biotechnol 85:693–698

    Article  CAS  Google Scholar 

  35. Ganji F, Vasheghani-Farahani S, Vasheghani-Farahani E (2010) Theoretical description of hydrogel swelling: a review. Iran Polym J 19(5):375–398

    CAS  Google Scholar 

  36. Kardag E, Saraydin D (2002) Swelling of superabsorbent acrylamide-sodium acrylate hydrogels prepared using multifunctional crosslinkers. Turk J Chem 26:863–875

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to acknowledge the Central Instrumentation Facility (CIF) at Birla Institute of Technology, Mesra established in 2006 in Technical Education Quality Improvement Programme (TEQIP) funded by World Bank for the state-of-the-art Instrumentation facility. The authors also acknowledge the financial support from Central Coir Research Institute (CCRI), Ministry of Micro, Small and Medium Enterprises (MSME) (Government of India), Allapuzha, Kerala, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suman Shekhar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shekhar, S., Mukherjee, M. & Sen, A.K. Swelling, thermal and mechanical properties of NIPAM-based terpolymeric hydrogel. Polym. Bull. 73, 125–145 (2016). https://doi.org/10.1007/s00289-015-1476-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1476-3

Keywords

Navigation