Skip to main content
Log in

Comparative study of electronic, optoelectronic, optical, and thermodynamic properties of two ovalene molecules and their derivatives functionalized with potassium and chlorine atoms

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this work, we have investigated the electronic, optoelectronic, optical, and thermodynamic properties of the parent molecules diphenanthro [3,4,5,6-efghi:3′,4′,5′,6′-uvabc]ovalene (C48H18), tribenzo[jk,mn,pq]dibenzo [5,6:7,8] pentapheno [2,1,14,13,12-stuvabcd] ovalene (C60H22), and its derivatives formed by through functionalization with chlorine and potassium atoms. All calculations were performed using Density Functional Theory (DFT) (HSE, ωB97XD, and CAM-B3LYP) and time-dependent density functional theory (TD-DFT), associated with the 6-31G(d) basis set. The results show that the molecules functionalized with potassium atoms have small gap energy values, which gives them good applications in electronics. These same molecules present a non-centrosymmetric architecture with a first hyperpolarizability value higher than that of the reference molecule for nonlinear optics, which is the paranitroaniline molecule. The high values of the average electric field, of the susceptibility, of the refractive index, and the small value of the dielectric constant of the molecules functionalized with potassium allow us to say that these molecules have good optoelectronic and photonic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published article and its supplementary information files.

Code availability

All calculation performed in this work are computed using the quantum computational chemistry program Gaussian 16.

References

  1. Bouba MO, Tchangnwa Nya F, Malloum A, Conradie J, Ndjaka JM (2021) DFT investigation of Percyanation effect of coronene molecule: comparative study with their perhalogenated counterparts. Polym Bull. https://doi.org/10.1007/s00289-021-03967-5

    Article  Google Scholar 

  2. Ramkumar S, Manoharan S, Anandan S (2012) Synthesis of D-(π-A) 2 organic chromophores for dye-sensitized solar cells. Dye Pigment 94(3):503–511. https://doi.org/10.1016/j.dyepig.2012.02.016

    Article  CAS  Google Scholar 

  3. Tchangnwa Nya F, Ejuh GW, Ndjaka JMB (2017) Theoretical study of optoelectronic and thermodynamic properties of molecule 4-[2-(2-N,N-dihydroxy amino thiophene)vinyl]benzanamine: influence of hydroxyl position. Mater Lett 202:89–95. https://doi.org/10.1016/j.matlet.2017.05.064

    Article  CAS  Google Scholar 

  4. Liao L, Peng H, Liu Z (2014) Chemistry makes graphene beyond graphene. J Am Chem Soc 136(35):12194–12200. https://doi.org/10.1021/ja5048297

    Article  CAS  PubMed  Google Scholar 

  5. Tahmineh J, Tayebeh D, Hosein M (2015) Analysis the optical behavior and stability graphene structures using DFT method. Bull Environ Pharmacol Life Sci. Available: url:http://www.bepls.co. (Online)

  6. Ritter KA, Lyding JW (2009) The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat Mater 8(3):235–242. https://doi.org/10.1038/nmat2378

    Article  CAS  PubMed  Google Scholar 

  7. Ruffieux P et al (2016) On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 531(7595):489–492. https://doi.org/10.1038/nature17151

    Article  CAS  PubMed  Google Scholar 

  8. Pan D, Zhang J, Li Z, Minghong W (2010) Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater 22(6):734–738. https://doi.org/10.1002/adma.200902825

    Article  CAS  PubMed  Google Scholar 

  9. Zhang ZZ, Chang K, Peeters FM (2008) Tuning of energy levels and optical properties of graphene quantum dots. Phys Rev B. https://doi.org/10.1103/PhysRevB.77.235411

    Article  Google Scholar 

  10. Güçlü AD, Potasz P, Hawrylak P (2010) Excitonic absorption in gate-controlled graphene quantum dots. Phys Rev B. https://doi.org/10.1103/PhysRevB.82.155445

    Article  Google Scholar 

  11. Mueller ML, Yan X, McGuire JA, Li L-s (2010) Triplet states and electronic relaxation in photoexcited graphene quantum dots. Nano Lett 10(7):2679–2682. https://doi.org/10.1021/nl101474d

    Article  CAS  PubMed  Google Scholar 

  12. Ponomarenko LA, Schedin F, Katsnelson MI, Yang R, Hill EW, Novoselov KS, Geim AK (2008) Chaotic dirac billiard in graphene quantum dots. Sci 320(5874):356–358. https://doi.org/10.1126/science.1154663

    Article  CAS  Google Scholar 

  13. Yan X, Cui X, Li LS (2010) Synthesis of large, stable colloidal graphene quantum dots with tunable size. J Am Chem Soc 132(17):5944–5945. https://doi.org/10.1021/ja1009376

    Article  CAS  PubMed  Google Scholar 

  14. Kim S et al (2012) Anomalous behaviors of visible luminescence from graphene quantum dots: interplay between size and shape. ACS Nano. https://doi.org/10.1021/nn302878r

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bacon M, Bradley SJ, Nann T (2013) Graphene quantum dots. Part Part Syst Charact 31(4):415–428. https://doi.org/10.1002/ppsc.201300252

    Article  CAS  Google Scholar 

  16. Rieger R, Müllen K (2010) Forever young: polycyclic aromatic hydrocarbons as model cases for structural and optical studies. J Phys Org Chem. https://doi.org/10.1002/poc.1644

    Article  Google Scholar 

  17. Kastler M, Schmidt J, Pisula W, Sebastiani D, Müllen K (2006) From armchair to zigzag peripheries in nanographenes. J Am Chem Soc 128(29):9526–9534. https://doi.org/10.1021/ja062026h

    Article  CAS  PubMed  Google Scholar 

  18. Iyer VS, Yoshimura K, Enkelmann V, Epsch R, Rabe JP, Müllen K (1998) A soluble C60 graphite segment. Angew Chemie Int Ed. https://doi.org/10.1002/(SICI)1521-3773(19981016)37:19%3c2696::AID-ANIE2696%3e3.0.CO;2-E

    Article  Google Scholar 

  19. Tan Y et al (2013) Atomically precise edge chlorination of nanographenes and its application in graphene nanoribbons. Nat Commun. https://doi.org/10.1038/ncomms3646

    Article  PubMed  Google Scholar 

  20. Narita A, Wang X-Y, Feng X, Muellen K (2019) New advances in nanographene chemistry. Chem Soc Rev Manus. https://doi.org/10.1039/x0xx00000x

    Article  Google Scholar 

  21. Ar H, Rm Mh et al (1991) Superconductivity at 18 K in potassium-doped C60. Nature 354:737–740

    Google Scholar 

  22. Roth F, Bauer J, Mahns B, Büchner B, Knupfer M (2012) Electronic structure of undoped and potassium-doped coronene investigated by electron energy-loss spectroscopy. Phys Rev B. https://doi.org/10.1103/PhysRevB.85.014513

    Article  Google Scholar 

  23. Kosugi T, Miyake T, Ishibashi S, Arita R, Aoki H (2011) Ab initio electronic structure of solid coronene: differences from and commonalities to picene. Phys Rev. https://doi.org/10.1103/PhysRevB.84.020507

    Article  Google Scholar 

  24. Ejuh GW, Nya FT, Kamsi RAY, Ndjaka JMB (2018) Investigation of the electronic, optoelectronics, and linear and nonlinear optical properties of the molecules heptacene ([7]acene) (C30H18) and [7]acene doped with potassium atom (C30H9K9). Polym Bull 75(2):637–652. https://doi.org/10.1007/s00289-017-2058-3

    Article  CAS  Google Scholar 

  25. Fedorov I, Zhuravlev Y, Berveno V (2012) Properties of crystalline coronene: dispersion forces leading to a larger van der Waals radius for carbon: properties of crystalline coronene. Phys Stat Solid (b) 249(7):1438–1444. https://doi.org/10.1002/pssb.201147563

    Article  CAS  Google Scholar 

  26. de Andres PL, Guijarro A, Vergés JA (2011) Ab initio electronic and geometrical structures of tripotassium-intercalated phenanthrene. Phys Rev B. https://doi.org/10.1103/PhysRevB.84.144501

    Article  Google Scholar 

  27. Ejuh GW, Nya FT, Kamsi RAY, Ndjaka JMB (2018) Investigation of the electronic, optoelectronics, and linear and nonlinear optical properties of the molecules heptacene ([7]acene) (C30H18) and [7]acene doped with potassium atom (C30H9K9). Polym Bull. https://doi.org/10.1007/s00289-017-2058-3

    Article  Google Scholar 

  28. Ejuh GW, Nouemo S, Nya FT, Marie NJ (2016) Modeling of the electronic, optoelectronics, photonic and thermodynamics properties of 1,4-bis(3-carboxyl-3-oxo-prop-1-enyl) benzene molecule. J Iran Chem Soc. https://doi.org/10.1007/s13738-016-0921-z

    Article  Google Scholar 

  29. Reshak AH (2014) Ab initio study of TaON, an active photocatalyst under visible light irradiation. Phys Chem Chem Phys. https://doi.org/10.1039/c4cp00285g

    Article  PubMed  Google Scholar 

  30. Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a screened Coulomb potential. J Chem Phys. https://doi.org/10.1063/1.1564060

    Article  Google Scholar 

  31. Heyd J, Peralta JE, Scuseria GE, Martin RL (2005) Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. J Chem Phys. https://doi.org/10.1063/1.2085170

    Article  PubMed  Google Scholar 

  32. Krukau AV, Vydrov OA, Izmaylov AF, Scuseria GE (2006) Influence of the exchange screening parameter on the performance of screened hybrid functionals. J Chem Phys. https://doi.org/10.1063/1.2404663

    Article  PubMed  Google Scholar 

  33. Ejuh GW, Tchangnwa Nya F, Ottou Abe MT, Jean-Baptiste FF, Ndjaka JMB (2017) Electronic structure, physico-chemical, linear and non linear optical properties analysis of coronene, 6B-, 6N-, 3B3N- substituted C24H12 using RHF, B3LYP and wB97XD methods. Opt Quantum Electron. https://doi.org/10.1007/s11082-017-1221-2

    Article  Google Scholar 

  34. Ejuh GW, Samuel N, Fridolin TN, Marie NJ (2016) Computational determination of the electronic and nonlinear optical properties of the molecules 2-(4-aminophenyl) Quinoline, 4-(4-aminophenyl) Quinoline, Anthracene, Anthraquinone and Phenanthrene. Mater Lett. https://doi.org/10.1016/j.matlet.2016.04.097

    Article  Google Scholar 

  35. Frisch MJ et al (2016) Gaussian 16. Gaussian Inc, Wallingford CT

    Google Scholar 

  36. Muz İ, Göktaş F, Kurban M (2020) 3d-transition metals (Cu, Fe, Mn, Ni, V and Zn)-doped pentacene π-conjugated organic molecule for photovoltaic applications: DFT and TD-DFT calculations. Theor Chem Acc. https://doi.org/10.1007/s00214-020-2544-9

    Article  Google Scholar 

  37. Dewar MJS, Thiel W (1977) Ground states of molecules. 38. the MNDO method. approximations and parameters. J Am Chem Soc 99(15):4899–4907. https://doi.org/10.1021/ja00457a004

    Article  CAS  Google Scholar 

  38. Pearson RG (1988) absolute electronegativity and hardness: application to inorganic chemistry. Inorg Chem. https://doi.org/10.1021/ic00277a030

    Article  Google Scholar 

  39. Mveme CDD, Tchangnwa Nya F, Ejuh GW, Yossa Kamsi RA, Ndjaka JMB (2020) Density functional theory study of optoelectronic, nonlinear optical, piezoelectric and thermodynamic properties of poly (3,4-ethylenedioxythiophene), poly(3,4-ethylenedioxyselenophene) and their derivatives. Opt Quantum Electron. https://doi.org/10.1007/s11082-020-02492-5

    Article  Google Scholar 

  40. Dharmaprakash SM (2017) Experimental and computational studies on second-and third-order nonlinear optical properties of a novel D- p -A type chalcone derivative. Opt Laser Technol 97:219–228. https://doi.org/10.1016/j.optlastec.2017.07.003

    Article  CAS  Google Scholar 

  41. Kabé C, Tchangnwa Nya F, Ejuh GW, Malloum A, Conradie J, Ndjaka JM (2021) Influence of zinc and copper on the electronic, linear, and nonlinear optical properties of organometallic complexes with phenalenyl radical: a computational study. Struct Chem. https://doi.org/10.1007/s11224-020-01670-1

    Article  Google Scholar 

  42. Ejuh GW, Tchangnwa Nya F, Djongyang N, Ndjaka JMB (2018) Study of some properties of quinone derivatives from quantum chemical calculations. Opt Quantum Electron. https://doi.org/10.1007/s11082-018-1603-0

    Article  Google Scholar 

  43. Bahedi K, Addou M, El Jouad M, Sofiani Z, El Oauzzani H, Sahraoui B (2011) Influence of strain/stress on the nonlinear-optical properties of sprayed deposited ZnO: Al thin films. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2011.04.072

    Article  Google Scholar 

  44. Ejuh GW, Ottou Abe MT, Tchangwa Nya F, Ndjaka JMB (2018) Prediction of electronic structure, dielectric and thermodynamical properties of flurbiprofen by density functional theory calculation. Karbala Int J Mod Sci 4(1):12–20. https://doi.org/10.1016/j.kijoms.2017.10.001

    Article  Google Scholar 

  45. Khalid M et al (2019) Electron donor and acceptor influence on the nonlinear optical response of diacetylene-functionalized organic materials (DFOMs): density functional theory calculations. Molecules. https://doi.org/10.3390/molecules24112096

    Article  PubMed  PubMed Central  Google Scholar 

  46. Malloum A, Conradie J (2020) Global and local minima of protonated acetonitrile clusters. New J Chem. https://doi.org/10.1039/d0nj03389h

    Article  Google Scholar 

  47. Yamijala SSRKC, Mukhopadhyay M, Pati SK (2015) Linear and nonlinear optical properties of graphene quantum dots: acomputational study. J Phys Chem C 119(21):12079–12087. https://doi.org/10.1021/acs.jpcc.5b03531

    Article  CAS  Google Scholar 

  48. Altürk S, Avci D, Tamer Ö, Atalay Y (2017) DFT calculations on spectroscopic, structural and NLO properties of silver (I) complex with picolinamide. Am Inst Phys 10(1063/1):4976464

    Google Scholar 

  49. Clar E (1964) Polycyclic hydrocarbons. Br Med Bull 20(2):121–126. https://doi.org/10.1093/oxfordjournals.bmb.a070304

    Article  Google Scholar 

  50. Zara Z et al (2017) A comparative study of DFT calculated and experimental UV/Visible spectra for thirty carboline and carbazole based compounds. J Mol Struct. https://doi.org/10.1016/j.molstruc.2017.07.093

    Article  Google Scholar 

  51. Foadin CST, Nya FT, Ejuh GW, Malloum A, Conradie J, Ndjaka JM (2020) DFT study of the influence of impurities on the structural, electronic, optoelectronic, and nonlinear optical properties of graphene nanosheet functionalized by the carboxyl group –COOH. J Mol Model. https://doi.org/10.1007/s00894-020-04592-1

    Article  PubMed  Google Scholar 

  52. Liang Y, Bonnell DA (1994) Structures and chemistry of the annealed SrTiO3(001) surface. Surf Sci 310(1–3):128–134. https://doi.org/10.1016/0039-6028(94)91378-1

    Article  CAS  Google Scholar 

  53. Vila FD et al (2010) Basis set effects on the hyperpolarizability of CHCl3: Gaussian-type orbitals, numerical basis sets and real-space grids. J Chem Phys. https://doi.org/10.1063/1.3457362

    Article  PubMed  Google Scholar 

  54. Hattab A et al (2019) Structures, binding energies, temperature effects, infrared spectroscopy of [Mg(NH 3) n = 1–10 ] + clusters from DFT and MP2 investigations. J Comput Chem. https://doi.org/10.1002/jcc.25825

    Article  PubMed  Google Scholar 

  55. Kabé C, Nya FT, Ejuh GW, Ndjaka JM (2020) Comparative study of optoelectronic, thermodynamic, linear and nonlinear optical properties of methyl phenalenyl doped to zinc and copper and their applications. J Mater Sci: Mater Electron 31(10):7898–7904. https://doi.org/10.1007/s10854-020-03328-4

    Article  CAS  Google Scholar 

  56. Jensen L, Van Duijnen PT (2005) The first hyperpolarizability of p-nitroaniline in 1,4-dioxane: a quantum mechanical/molecular mechanics study. J Chem Phys. https://doi.org/10.1063/1.1999633

    Article  PubMed  Google Scholar 

  57. Barnett SM, Pegg DT (1993) Phase measurements. Phys Rev A 47(5):4537–4540. https://doi.org/10.1103/PhysRevA.47.4537

    Article  CAS  PubMed  Google Scholar 

  58. Andraud C et al (1994) Theoretical and experimental investigations of the nonlinear optical properties of vanillin, polyenovanillin, and bisvanillin derivatives. J Am Chem Soc. https://doi.org/10.1021/ja00084a055

    Article  Google Scholar 

  59. Srivastava R (2018) Theoretical studies of optoelectronic, magnetization and heat transport properties of conductive metal adatoms adsorbed on edge chlorinated nanographenes. RSC Adv 8(32):17723–17731. https://doi.org/10.1039/C8RA02032A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mary YS, Yalcin G, Mary YS, Resmi KS, Thomas R, Önkol T (2021) “Spectroscopic, quantum mechanical studies, ligand protein interactions and photovoltaic efficiency modeling of some bioactive benzothiazolinone acetamide analogs. Mol React Anal. https://doi.org/10.1007/s11696-019-01047-7

    Article  Google Scholar 

  61. Zhao D, Qiuchen L, Runzhou S, Li Y, Zhao M (2019) Light harvesting and optical-electronic properties of two quercitin and rutin natural dyes. Appl Sci 9(12):2567. https://doi.org/10.3390/app9122567

    Article  CAS  Google Scholar 

  62. Fonkem CC, Ndjaka JMB, Ejuh GW (2020) DFT study of the enhancement of physico-chemical, nonlinear and optoelectronic properties of the 2-cyano-3-[4(diphenylamino) phenyl] acrylic acid molecule by doping with the potassium atom. Bull Mater Sci. https://doi.org/10.1007/s12034-020-02175-7

    Article  Google Scholar 

  63. Fankam JB, Ejuh GW, Nya FT, Ndjaka JMB (2020) Theoretical investigation of the molecular structure, vibrational spectra, thermodynamic and nonlinear optical. Opt Quantum Electron 52(6):1–23. https://doi.org/10.1007/s11082-020-02396-4

    Article  CAS  Google Scholar 

  64. Ejuh G, Fonkem C, Tadjouteu Assatse Y, Yossa Kamsi RA, Tchangnwa Nya LP, Ndukum JMBN (2020) Study of the structural, chemical descriptors and optoelectronic properties of the drugs Hydroxychloroquine and Azithromycin. Heliyon 6(8):e04647. https://doi.org/10.1016/j.heliyon.2020.e04647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hlel A, Mabrouk A, Chemek M, Ben Khalifa I, Alimi K (2015) A DFT study of charge-transfer and opto-electronic properties of some new materials involving carbazole units. Comput Condens Matter 3:30–40. https://doi.org/10.1016/j.cocom.2015.02.001

    Article  Google Scholar 

  66. Ejuh GW, Nya FT, Ndjaka NDJMB (2020) Theoretical study on the electronic, optoelectronic, linear and non linear optical properties and UV – Vis spectrum of coronene and coronene substituted with chlorine. SN Appl Sci 2(7):1–11. https://doi.org/10.1007/s42452-020-3028-1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Center for High Performance Computing (CHPC), South Africa, for granting them access to their clusters and computational resources.

Funding

The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Contributions

ECYK: conceptualization, methodology, validation, investigation, data curation, formal analysis, and writing—original draft; FTN: conceptualization, investigation, data curation, formal analysis, writing—review and editing, and supervision; AM: writing—review and editing; JC: writing—review and editing.

Corresponding author

Correspondence to Fridolin Tchangnwa Nya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 849 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yibain Khokho, E.C., Tchangnwa Nya, F., Malloum, A. et al. Comparative study of electronic, optoelectronic, optical, and thermodynamic properties of two ovalene molecules and their derivatives functionalized with potassium and chlorine atoms. Polym. Bull. 80, 9531–9567 (2023). https://doi.org/10.1007/s00289-022-04525-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04525-3

Keywords

Navigation