Skip to main content
Log in

The effect of pigment volume concentration on self-stratification and physico-mechanical properties of solvent-free silicone/epoxy coating systems

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Self-stratifying coatings facilitate segregation of two distinct and inter connected coating layers with complimentary properties in a single shot application. This novel process thus obviates the need for multiple coating steps. In the current work, we report the effect of pigmentation on self-stratification of a solvent-free coating system comprising incompatible polymer blends of epoxy and silicone resins. The resins were pigmented to impart anticorrosive properties to the epoxy layer (pigment volume concentration, PVC of 10, 20 and 30% using red iron oxide) and weathering resistance to the silicone resin using TiO2 (a fixed PVC of 10%). A series of complimentary analytical techniques were employed to probe the degree of stratification of the cured coating at different length scales, namely contact angle goniometry, attenuated total reflectance-Fourier transformed infrared spectroscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy. There were evidence of TiO2 migrating towards epoxy and iron oxide towards silicone resin, even though, the pigments were properly dispersed in their corresponding resins. This implied significant effect of PVC on stratification of epoxy and silicone resins. Rheological studies were employed to epoxy, silicone resin and their pigmented mixture to understand the curing behaviour as well as to understand its effect on stratification process. We also scrutinized the outcome of constrained stratification on thermo/mechanical and anticorrosive performance of the coatings. Contact angle values obtained for top surfaces of all PVC, i.e., 10, 20 & 30 stratified coatings were found to be > 106°and shows hydrophobicity and the bottom coat was found to be < 50° which is more hydrophilic in 20 & 30 PVCs coatings. The 20 PVC coating showed clear stratification, optimal anticorrosive and hydrophobic properties as revealed by electrochemical impedance spectroscopy and contact angle goniometry studies, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Funke W (1976) Preparation and properties of paint films with special morphological structure. J Oil Colour Chem Assoc 59:398–403

    CAS  Google Scholar 

  2. Pawar SS, Baloji Naik R, Rath SK et al (2020) Photoinduced hydrophilicity and self-cleaning characteristics of silicone-modified soya alkyd/TiO2 nanocomposite coating. J Coat Technol Res 17:719–730. https://doi.org/10.1007/s11998-019-00253-y

    Article  CAS  Google Scholar 

  3. Zahedi S, Zaarei D, Ghaffarian SR (2018) Self-stratifying coatings: a review. J Coat Technol Res 15:1–12. https://doi.org/10.1007/s11998-017-9996-4

    Article  CAS  Google Scholar 

  4. Kumar V, Singh S, Kandasubramanian B (2017) Thermal ablation and laser shielding characteristics of Ionic liquid-microseeded functionalized nanoclay/resorcinol formaldehyde nanocomposites for armor protection. Polym Plast Technol Eng 56:1542–1555. https://doi.org/10.1080/03602559.2017.1280684

    Article  CAS  Google Scholar 

  5. Kumar CV, Kandasubramanian B (2019) Advances in ablative composites of carbon based materials: a review. Ind Eng Chem Res 58:22663–22701. https://doi.org/10.1021/acs.iecr.9b04625

    Article  CAS  Google Scholar 

  6. Daniel A, Ivaturi S, Kumar A, Kandasubramanian B (2019) Development and characterization of a contoured passive thermal protection system. Int J Appl Ceram Technol 16:170–184. https://doi.org/10.1111/ijac.13049

    Article  CAS  Google Scholar 

  7. Daniel A, Gudivada G, Srikanth I, Kandasubramanian B (2019) Effect of Zirconium Diboride Incorporation on thermal stability and ablation characteristics of carbon fiber-reinforced resorcinol-formaldehyde composites. Ind Eng Chem Res 58:18623–18634. https://doi.org/10.1021/acs.iecr.9b03469

    Article  CAS  Google Scholar 

  8. Korde JM, Sreekumar AV, Kandasubramanian B (2020) Corrosion inhibition of 316L-type stainless steel under marine environments using epoxy/waste plastic soot coatings. SN Appl Sci. https://doi.org/10.1007/s42452-020-3096-2

    Article  Google Scholar 

  9. Benjamin S, Carr C, Walbridge D (1996) Self-stratifying coatings for metallic substrates. Prog Org Coat 28:197–207. https://doi.org/10.1016/0300-9440(95)00596-X

    Article  CAS  Google Scholar 

  10. Carr C (1990) Multilayered paint films from single coat systems. J Oil Colour Chem Assoc 73:403–404

    CAS  Google Scholar 

  11. Walbridge D (1996) Self-stratifying coatings–an overview of a European community research project. Prog Org Coat 28:155–159. https://doi.org/10.1016/0300-9440(95)00593-5

    Article  CAS  Google Scholar 

  12. Verkholantsev VV (1995) Heterophase and self-stratifying polymer coatings. Prog Org Coat 26:31–52. https://doi.org/10.1016/0300-9440(95)00552-8

    Article  CAS  Google Scholar 

  13. Liu C, Ma C, Xie Q, Zhang G (2017) Self-repairing silicone coatings for marine anti-biofouling. J Mater Chem A 5:15855–15861. https://doi.org/10.1039/C7TA05241C

    Article  CAS  Google Scholar 

  14. Lemesle C, Bellayer S, Duquesne S et al (2021) Self-stratified bio-based coatings: formulation and elucidation of critical parameters governing stratification. Appl Surf Sci 536:147687. https://doi.org/10.1016/j.apsusc.2020.147687

    Article  CAS  Google Scholar 

  15. Gore PM, Balakrishnan S, Kandasubramanian B (2019) Superhydrophobic corrosion inhibition polymer coatings. In: Superhydrophobic polymer coatings. Elsevier, pp 223–243

  16. Nikiforow I, Adams J, König AM et al (2010) Self-stratification during film formation from latex blends driven by differences in collective diffusivity. Langmuir 26:13162–13167. https://doi.org/10.1021/la101697r

    Article  CAS  Google Scholar 

  17. Miszczyk A, Darowicki K (2020) Stratification of nano-pigments in anti-corrosive coatings by means of magnetic field. Prog Org Coat. https://doi.org/10.1016/j.porgcoat.2020.105869

    Article  Google Scholar 

  18. Beaugendre A, Lemesle C, Bellayer S et al (2019) Flame retardant and weathering resistant self-layering epoxy-silicone coatings for plastics. Prog Org Coat 136:105269. https://doi.org/10.1016/j.porgcoat.2019.105269

    Article  CAS  Google Scholar 

  19. Gyan DS, Balasubramanian K (2016) Ionic liquid microseeded WC/RF ablative composite for heat shielding. RSC Adv 6:65152–65161. https://doi.org/10.1039/c6ra09285c

    Article  CAS  Google Scholar 

  20. Daniel A, Srikanth I, Kandasubramanian B (2020) Effect of boron nitride addition on ablation characteristics of carbon fiber reinforced resorcinol formaldehyde composites. Ind Eng Chem Res 59:19299–19311. https://doi.org/10.1021/acs.iecr.0c03818

    Article  CAS  Google Scholar 

  21. Jain S, Gupta G, Kshirsagar DR et al (2019) Burning rate and other characteristics of strontium titanate (SrTiO3) supplemented AP/HTPB/Al composite propellants. Def Technol 15:313–318. https://doi.org/10.1016/j.dt.2018.10.004

    Article  Google Scholar 

  22. Bangar GY, Ghule D, Singh RKP, Kandasubramanian B (2018) Thermally triggered transition of fluid atomized micro- and nanotextured multiscale rough surfaces. Coll Surf A Physicochem Eng Asp 549:212–220. https://doi.org/10.1016/j.colsurfa.2018.03.044

    Article  CAS  Google Scholar 

  23. Bangar GY, Ghule D, Singh RKP, Kandasubramanian B (2018) Overview of failure modes of pseudo compositionally graded thermal barrier coatings and remedies for augmenting the service life of the coated components. Mater Focus 7:741–750. https://doi.org/10.1166/mat.2018.1590

    Article  CAS  Google Scholar 

  24. Kumar V, Kandasubramanian B (2016) Processing and design methodologies for advanced and novel thermal barrier coatings for engineering applications. Particuology 27:1–28. https://doi.org/10.1016/j.partic.2016.01.007

    Article  CAS  Google Scholar 

  25. Misev TA (1991) Thermodynamic analysis of phase separation in selfstratifying coatings-solubility parameters approach. J Coat Technol 63:23–27

    Google Scholar 

  26. Baghdachi J, Perez H, Talapatcharoenkit P, Wang B (2015) Design and development of self-stratifying systems as sustainable coatings. Prog Org Coat 78:464–473. https://doi.org/10.1016/j.porgcoat.2014.06.017

    Article  CAS  Google Scholar 

  27. Langer E, Kuczyńska H, Kamińska-Tarnawska E, Łukaszczyk J (2011) Self-stratifying coatings containing barrier and active anticorrosive pigments. Prog Org Coat 71:162–166. https://doi.org/10.1016/j.porgcoat.2011.01.016

    Article  CAS  Google Scholar 

  28. Vink P, Bots T (1996) Formulation parameters influencing self-stratification of coatings. Prog Org Coatings 28:173–181. https://doi.org/10.1016/0300-9440(95)00595-1

    Article  CAS  Google Scholar 

  29. Mahato TK, Pawar SS (2014) Role of curing agents on self-stratification behavior of pigmented epoxy resin chlorinated rubber blend. Paint India 64:61–65

    CAS  Google Scholar 

  30. Beaugendre A, Degoutin S, Bellayer S et al (2017) Self-stratifying coatings: a review. Prog Org Coat 110:210–241. https://doi.org/10.1016/j.porgcoat.2017.03.011

    Article  CAS  Google Scholar 

  31. Verma C, Olasunkanmi LO, Akpan ED et al (2020) Epoxy resins as anticorrosive polymeric materials: a review. React Funct Polym 156:104741. https://doi.org/10.1016/j.reactfunctpolym.2020.104741

    Article  CAS  Google Scholar 

  32. N. P, Cole IS, Kuznetsov A, et al. (2021) Experimental and DFT studies of gadolinium decorated graphene oxide materials for their redox properties and as a corrosion inhibition barrier layer on Mg AZ13 alloy in a 3.5% NaCl environment. RSC Adv 11:22095–22105. https://doi.org/10.1039/D1RA03495B

  33. Awad SA, Fellows CM, Mahini SS (2018) Effects of accelerated weathering on the chemical, mechanical, thermal and morphological properties of an epoxy/multi-walled carbon nanotube composite. Polym Test 66:70–77. https://doi.org/10.1016/j.polymertesting.2017.12.015

    Article  CAS  Google Scholar 

  34. Bifulco A, Parida D, Salmeia KA et al (2020) Fire and mechanical properties of DGEBA-based epoxy resin cured with a cycloaliphatic hardener: combined action of silica, melamine and DOPO-derivative. Mater Des 193:108862. https://doi.org/10.1016/j.matdes.2020.108862

    Article  CAS  Google Scholar 

  35. Awad SA, Fellows CM, Mahini SS (2019) Evaluation of bisphenol A-based epoxy resin containing multiwalled carbon nanotubes to improve resistance to degradation. J Compos Mater 53:2981–2991. https://doi.org/10.1177/0021998318816784

    Article  CAS  Google Scholar 

  36. Olowojoba GB, Eslava S, Gutierrez ES et al (2016) In situ thermally reduced graphene oxide/epoxy composites: thermal and mechanical properties. Appl Nanosci 6:1015–1022. https://doi.org/10.1007/s13204-016-0518-y

    Article  CAS  Google Scholar 

  37. Yilgör E, Yilgör I (2014) Silicone containing copolymers: synthesis, properties and applications. Prog Polym Sci 39:1165–1195. https://doi.org/10.1016/j.progpolymsci.2013.11.003

    Article  CAS  Google Scholar 

  38. Wolf MP, Salieb-Beugelaar GB, Hunziker P (2018) PDMS with designer functionalities—properties, modifications strategies, and applications. Prog Polym Sci 83:97–134. https://doi.org/10.1016/j.progpolymsci.2018.06.001

    Article  CAS  Google Scholar 

  39. Kargarfard N, Simon F, Schlenstedt K et al (2021) Self-stratifying powder coatings based on eco-friendly, solvent-free epoxy/silicone technology for simultaneous corrosion and weather protection. Prog Org Coat 161:106443. https://doi.org/10.1016/j.porgcoat.2021.106443

    Article  CAS  Google Scholar 

  40. Abbasian A, Ekbatani S, Bagherzadeh N (2021) On the stratification mechanism of self-stratifying epoxy–acrylic coatings. J Coat Technol Res 18:559–568. https://doi.org/10.1007/s11998-020-00424-2

    Article  CAS  Google Scholar 

  41. Carr C, Wallstöm E (1996) Theoretical aspects of self-stratification. Prog Org Coat 28:161–171. https://doi.org/10.1016/0300-9440(95)00594-3

    Article  CAS  Google Scholar 

  42. Zahedi S, Zaarei D, Ghaffarian SR, Jimenez M (2020) A new approach to design self stratifying coatings containing nano and micro pigments. J Dispers Sci Technol 41:902–908. https://doi.org/10.1080/01932691.2019.1614032

    Article  CAS  Google Scholar 

  43. Owens DK, Wendt RC (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13:1741–1747. https://doi.org/10.1002/app.1969.070130815

    Article  CAS  Google Scholar 

  44. Gore PM, Naebe M, Wang X, Kandasubramanian B (2021) Nano-fluoro dispersion functionalized superhydrophobic degummed & waste silk fabric for sustained recovery of petroleum oils & organic solvents from wastewater. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2021.127822

    Article  Google Scholar 

  45. Chen Y, Zhou C, Chang J et al (2014) The effect of epoxy–silicone copolymer content on the thermal and mechanical properties of cured epoxy resin modified with siloxane. RSC Adv 4:60685–60693. https://doi.org/10.1039/C4RA09230A

    Article  CAS  Google Scholar 

  46. Nikolic G, Zlatkovic S, Cakic M et al (2010) Fast fourier transform IR characterization of epoxy GY systems crosslinked with aliphatic and cycloaliphatic EH polyamine adducts. Sensors 10:684–696. https://doi.org/10.3390/s100100684

    Article  CAS  Google Scholar 

  47. Tirumali M, Balasubramanian K, Kumaraswamy A (2017) Functionally layered graphite reinforced epoxy composite sandwiched between epoxy composites: their electrical and flexural properties. Mater Focus 6:691–697. https://doi.org/10.1166/mat.2017.1467

    Article  CAS  Google Scholar 

  48. Tirumali M, Kandasubramanian B, Kumaraswamy A et al (2018) Fabrication, physicochemical characterizations and electrical conductivity studies of modified carbon nanofiber-reinforced epoxy composites: effect of 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid. Polym–Plast Technol Eng 57:218–228. https://doi.org/10.1080/03602559.2017.1320719

    Article  CAS  Google Scholar 

  49. Chen X, Wen SF, Feng T, Yuan X (2020) High solids organic-inorganic hybrid coatings based on silicone-epoxy-silica coating with improved anticorrosion performance for AA2024 protection. Prog Org Coat 139:105374. https://doi.org/10.1016/j.porgcoat.2019.105374

    Article  CAS  Google Scholar 

  50. Abbasian A, Ekbatani S (2019) Resin migration tracking via real-time monitoring FTIR- ATR in a self-stratifying system. Prog Org Coat 131:159–164. https://doi.org/10.1016/j.porgcoat.2019.01.051

    Article  CAS  Google Scholar 

  51. Toussaint A (1996) Self-stratifying coatings for plastic substrates (BRITE EURAM PROJECT RI 1B 0246 C(H)). Prog Org Coat 28:183–195. https://doi.org/10.1016/0300-9440(95)00597-8

    Article  CAS  Google Scholar 

  52. Du W, Tan L, Zhang Y et al (2019) Dynamic rheological investigation during curing of a thermoset polythiourethane system. Int J Polym Sci 2019:1–10. https://doi.org/10.1155/2019/8452793

    Article  CAS  Google Scholar 

  53. Gupta P, Kandasubramanian B (2017) Directional fluid gating by janus membranes with heterogeneous wetting properties for selective oil-water separation. ACS Appl Mater Interfaces 9:19102–19113. https://doi.org/10.1021/acsami.7b03313

    Article  CAS  Google Scholar 

  54. Sarkar P, Kandasubramanian B (2021) Fluorine-free superhydrophobic characterized coatings: a mini review. Marit Technol Res 3:365–376. https://doi.org/10.33175/mtr.2021.251814

    Article  Google Scholar 

  55. Sarkar PK, Kandasubramanian B (2021) Metals to polymer composites for submerged hull: a paradigm shift. Polym Technol Mater 60:1785–1819. https://doi.org/10.1080/25740881.2021.1930048

    Article  CAS  Google Scholar 

  56. Gore PM, Purushothaman A, Naebe M, et al (2019) Nanotechnology for Oil-Water Separation. In: Prasad R, Karchiyappan T (eds) Advanced research in nanosciences for water technology, 1st ed. Springer Nature Switzerland AG, Cham, pp 299–339

  57. Gore PM, Kandasubramanian B (2018) Heterogeneous wettable cotton based superhydrophobic Janus biofabric engineered with PLA/functionalized-organoclay microfibers for efficient oil–water separation. J Mater Chem A 6:7457–7479. https://doi.org/10.1039/C7TA11260B

    Article  CAS  Google Scholar 

  58. Gore PM, Naebe M, Wang X, Kandasubramanian B (2019) Progress in silk materials for integrated water treatments: fabrication, modification and applications. Chem Eng J 374:437–470. https://doi.org/10.1016/j.cej.2019.05.163

    Article  CAS  Google Scholar 

  59. Gore PM, Gawali P, Naebe M et al (2020) Polycarbonate and activated charcoal-engineered electrospun nanofibers for selective recovery of oil/solvent from oily wastewater. SN Appl Sci 2:1786. https://doi.org/10.1007/s42452-020-03609-x

    Article  CAS  Google Scholar 

  60. Gore PM, Naebe M, Wang X, Kandasubramanian B (2019) Silk fibres exhibiting biodegradability & superhydrophobicity for recovery of petroleum oils from oily wastewater. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2019.121823

    Article  Google Scholar 

  61. Gore PM, Dhanshetty M, K B, (2016) Bionic creation of nano-engineered Janus fabric for selective oil/organic solvent absorption. RSC Adv 6:111250–111260. https://doi.org/10.1039/C6RA24106A

    Article  CAS  Google Scholar 

  62. Udayakumar KV, Gore PM, Kandasubramanian B (2021) Foamed materials for oil-water separation. Chem Eng J Adv 5:100076. https://doi.org/10.1016/j.ceja.2020.100076

    Article  CAS  Google Scholar 

  63. Gore PM, Zachariah S, Gupta P, K. B, (2016) Multifunctional nano-engineered and bio-mimicking smart superhydrophobic reticulated ABS/fumed silica composite thin films with heat-sinking applications. RSC Adv 6:105180–105191. https://doi.org/10.1039/C6RA16781K

    Article  CAS  Google Scholar 

  64. Langer E, Waśkiewicz S, Kuczyńska H, Kamińska-Bach G (2014) Self-stratifying coatings based on schiff base epoxy resins. J Coat Technol Res 11:865–872. https://doi.org/10.1007/s11998-014-9603-x

    Article  CAS  Google Scholar 

  65. Inamdar A, Cherukattu J, Anand A, Kandasubramanian B (2018) Thermoplastic-toughened high-temperature cyanate esters and their application in advanced composites. Ind Eng Chem Res 57:4479–4504. https://doi.org/10.1021/acs.iecr.7b05202

    Article  CAS  Google Scholar 

  66. Salunke A, Sasidharan S, Gopinathapanicker JC et al (2021) Cyanate ester epoxy blends for structural and functional composites. Ind Eng Chem Res 60:3260–3277. https://doi.org/10.1021/acs.iecr.0c05008

    Article  CAS  Google Scholar 

  67. Zhang J-T, Hu J-M, Zhang J-Q, Cao C-N (2004) Studies of water transport behavior and impedance models of epoxy-coated metals in NaCl solution by EIS. Prog Org Coatings 51:145–151. https://doi.org/10.1016/j.porgcoat.2004.08.001

    Article  CAS  Google Scholar 

  68. McIntyre JM, Pham HQ (1996) Electrochemical impedance spectroscopy; a tool for organic coatings optimizations. Prog Org Coatings 27:201–207. https://doi.org/10.1016/0300-9440(95)00532-3

    Article  CAS  Google Scholar 

  69. Macedo MCSS, Margarit-Mattos ICP, Fragata FL et al (2009) Contribution to a better understanding of different behaviour patterns observed with organic coatings evaluated by electrochemical impedance spectroscopy. Corros Sci 51:1322–1327. https://doi.org/10.1016/j.corsci.2009.03.016

    Article  CAS  Google Scholar 

  70. Kalendová A, Veselý D, Sapurina I, Stejskal J (2008) Anticorrosion efficiency of organic coatings depending on the pigment volume concentration of polyaniline phosphate. Prog Org Coatings 63:228–237. https://doi.org/10.1016/j.porgcoat.2008.06.005

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. C. P. Ramanarayanan, Vice-Chancellor of DIAT (DU) for motivation, and support. The authors would like to thank Shri. P. T. Rojatkar, Director of Naval Material Research Laboratory for providing guidance and encouragement to carry out this work. The authors are thankful to the Editor, and anonymous reviewers for improving the quality of the revised manuscript by their valuable comments, and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balasubramanian Kandasubramanian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pawar, S.S., Naik, R.B., Billa, S. et al. The effect of pigment volume concentration on self-stratification and physico-mechanical properties of solvent-free silicone/epoxy coating systems. Polym. Bull. 80, 2045–2067 (2023). https://doi.org/10.1007/s00289-022-04138-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04138-w

Keywords

Navigation