Skip to main content

Advertisement

Log in

Polylactic acid (PLA) membrane—significance, synthesis, and applications: a review

  • Review Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Polylactic acid is a polyester polymer, which is recyclable and renewable as well. Membrane made of polylactic acid is acquiring attention nowadays due to its superior properties and versatility in application. This review primarily explains various synthesis routes of polylactic acid membrane and its applications. Sometimes, in membrane synthesis, polylactic acid is used with some other copolymers such as caprolactam, ethylene glycol to obtain the required functionality or property for its specific application. Some copolymers that find it helpful with polylactic acid for membrane synthesis are also discussed here with its specificity and enhanced properties. In this review, precise and detailed PLA membrane structure and its degradation mechanism is discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kang IJ, Yoon SH, Lee CH (2002) Comparison of the filtration characteristics of organic and inorganic membranes in a membrane-coupled anaerobic bioreactor. Water Res 36(7):1803–1813. https://doi.org/10.1016/S0043-1354(01)00388-8

    Article  CAS  Google Scholar 

  2. Lin YS, Kumakiri I, Nair BN, Alsyouri H (2007) MICROPOROUS INORGANIC MEMBRANES. 31(2). https://doi.org/10.1081/SPM-120017009, https://doi.org/10.1081/SPM-120017009

  3. Verweij H (2012) Inorganic membranes. Curr Opin Chem Eng 1(2):156–162. https://doi.org/10.1016/J.COCHE.2012.03.006

    Article  CAS  Google Scholar 

  4. Baker RW (2000) Membrane technology. Kirk-Othmer Encycl Chem Technol. https://doi.org/10.1002/0471238961.1305130202011105.A01

    Article  Google Scholar 

  5. Suhas DP, Aminabhavi TM, Raghu AV (2014) Para-toluene sulfonic acid treated clay loaded sodium alginate membranes for enhanced pervaporative dehydration of isopropanol. Appl Clay Sci 101:419–429. https://doi.org/10.1016/j.clay.2014.08.017

  6. Magalad VT, Gokavi GS, Nadagouda MN, Aminabhavi TM (2011) Pervaporation separation of water-ethanol mixtures using organic-inorganic nanocomposite membranes. J Phys Chem C 115(30):14731–14744. https://doi.org/10.1021/jp201185g

    Article  CAS  Google Scholar 

  7. Strathmann H (2001) Membrane separation processes: Current relevance and future opportunities. AIChE J 47(5):1077–1087. https://doi.org/10.1002/aic.690470514

    Article  CAS  Google Scholar 

  8. Suhas DP, Aminabhavi TM, Raghu AV (2014) Mixed matrix membranes of H-ZSM5-loaded poly(vinyl alcohol) used in pervaporation dehydration of alcohols: influence of silica/alumina ratio. Polym Eng Sci 54(8):1774–1782. https://doi.org/10.1002/PEN.23717

  9. Suhas DP, Raghu AV, Jeong HM Aminabhavi TM (2013) Graphene-loaded sodium alginate nanocomposite membranes with enhanced isopropanol dehydration performance via a pervaporation technique. RSC Adv 3(38):17120–17130. https://doi.org/10.1039/C3RA42062K

  10. McHugh AJ (2005) The role of polymer membrane formation in sustained release drug delivery systems. J Control Release 109(1–3):211–221. https://doi.org/10.1016/j.jconrel.2005.09.038

    Article  CAS  Google Scholar 

  11. Asad A, Sameoto D, Sadrzadeh M (2020) Overview of membrane technology. In: Nanocomposite membranes for water and gas separation, pp 1–28. https://doi.org/10.1016/b978-0-12-816710-6.00001-8

  12. Carothers WH (1929) Studies on polymerization and ring formation. I. An introduction to the general theory of condensation polymers. J Am Chem Soc 51(8):2548–2559

    Article  CAS  Google Scholar 

  13. Lowe CE (1954) Preparation of high molecular weight polyhydroxyacetic ester. United states Patent Office, pp 2–4

  14. Martin AM (1996) Fermentation processes for the production of lactic acid. Lactic acid bacteria, pp 269–301. https://doi.org/10.1007/978-3-642-61462-0_12

  15. Datta R, Tsai SP (1997) Lactic acid production and potential uses: a technology and economics assessment. ACS Symp Ser 666:223–236. https://doi.org/10.1021/BK-1997-0666.CH012

    Article  Google Scholar 

  16. Piemonte V, Gironi F (2012) Kinetics of hydrolytic degradation of PLA. J Polym Environ 21(2):313–318. https://doi.org/10.1007/S10924-012-0547-X

  17. Elsawy MA, Kim KH, Park JW, Deep A (2017) Hydrolytic degradation of polylactic acid (PLA) and its composites. Renew Sustain Energy Rev 79:1346–1352. https://doi.org/10.1016/J.RSER.2017.05.143

    Article  CAS  Google Scholar 

  18. Rashkov I, Manolova N, Li SM, Espartero JL, Vert M (1996) Synthesis, characterization, and hydrolytic degradation of PLA/PEO/PLA triblock copolymers with short poly(l-lactic acid) chains. Macromolecules 29(1):50–56. https://doi.org/10.1021/MA950530T

    Article  CAS  Google Scholar 

  19. Fukuda N, Tsuji H, Ohnishi Y (2002) Physical properties and enzymatic hydrolysis of poly(l-lactide)–CaCO3 composites. Polym Degrad Stab 78(1):119–127. https://doi.org/10.1016/S0141-3910(02)00125-8

    Article  CAS  Google Scholar 

  20. Datta R, Tsai S, Bonsignore P, Moon S, Frank JR (1995) And lactic acid derivatives, vol 16, pp 221–231

  21. Martin O, Avérous L (2001) Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42(14):6209–6219. https://doi.org/10.1016/S0032-3861(01)00086-6

    Article  CAS  Google Scholar 

  22. Tiersch TR, Monroe WT (2016) Three-dimensional printing with polylactic acid (PLA) thermoplastic offers new opportunities for cryobiology. Cryobiology 73(3):396–398. https://doi.org/10.1016/j.cryobiol.2016.10.005

    Article  CAS  Google Scholar 

  23. Li G et al (2020) Synthesis and biological application of polylactic acid. Molecules (Basel, Switzerland) 25(21). https://doi.org/10.3390/molecules25215023

  24. Cohn D, Younes H (1988) Biodegradable PEO/PLA block copolymers. J Biomed Mater Res 22(11):993–1009. https://doi.org/10.1002/jbm.820221104

    Article  CAS  Google Scholar 

  25. Athanasiou KA, Niederauer GG, Agrawal CM (1996) Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials 17(2):93–102. https://doi.org/10.1016/0142-9612(96)85754-1

    Article  CAS  Google Scholar 

  26. Yu X, Liu F, Wang L, Xiong Z, Wang Y (2015) Robust poly(lactic acid) membranes improved by polysulfone-g-poly(lactic acid) copolymers for hemodialysis. RSC Adv 5(95):78306–78314. https://doi.org/10.1039/c5ra15816h

    Article  CAS  Google Scholar 

  27. Konstantinos Avgoustakis (2004) Pegylated poly(lactide) and poly(lactide-co-glycolide) nanoparticles: preparation, properties and possible applications in drug delivery. Curr Drug Deliv 1(4):13. [Online]. http://www.ingentaconnect.com/content/ben/cdd/2004/00000001/00000004/art00002

  28. Fu SJ, Zhang PH (2019) Surface modification of polylactic acid and poly (D, L-lactide-co-glycolide) biodegradable materials via chitosan-coating treatment: a new approach for developing novel antibacterial acupoint catgut embedding materials. Text Res J 89(13):2583–2594. https://doi.org/10.1177/0040517518798649

    Article  CAS  Google Scholar 

  29. Sivalingam G, Madras G (2004) Thermal degradation of binary physical mixtures and copolymers of poly(ε-caprolactone), poly(D, L-lactide), poly(glycolide). Polym Degrad Stab 84(3):393–398. https://doi.org/10.1016/j.polymdegradstab.2003.12.008

    Article  CAS  Google Scholar 

  30. Robert P, Mauduit J, Frank RM, Vert M (1993) Biocompatibility and resorbability of a polylactic acid membrane for periodontal guided tissue regeneration. Biomaterials 14(5):353–358. https://doi.org/10.1016/0142-9612(93)90054-6

    Article  CAS  Google Scholar 

  31. Abdal-Hay A, Sheikh FA, Lim JK (2013) Air jet spinning of hydroxyapatite/poly(lactic acid) hybrid nanocomposite membrane mats for bone tissue engineering. Colloids Surf, B 102:635–643. https://doi.org/10.1016/j.colsurfb.2012.09.017

    Article  CAS  Google Scholar 

  32. Bin Ma H et al (2012) Preparation and cytocompatibility of polylactic acid/hydroxyapatite/graphene oxide nanocomposite fibrous membrane. Chinese Sci Bull 57(23):3051–3058. https://doi.org/10.1007/s11434-012-5336-3

  33. Zhu L, Liu F, Yu X, Xue L (2015) Poly(lactic acid) hemodialysis membranes with poly(lactic acid)-block-poly(2-hydroxyethyl methacrylate) copolymer as additive: preparation, characterization, and performance. ACS Appl Mater Interfaces 7(32):17748–17755. https://doi.org/10.1021/acsami.5b03951

    Article  CAS  Google Scholar 

  34. Li D, Frey MW, Baeumner AJ (2006) Electrospun polylactic acid nanofiber membranes as substrates for biosensor assemblies. J Membr Sci 279(1–2):354–363. https://doi.org/10.1016/j.memsci.2005.12.036

    Article  CAS  Google Scholar 

  35. Wang X et al (2021) Performance adjustable porous polylactic acid-based membranes for controlled release fertilizers. J Appl Polym Sci 138(2):1–12. https://doi.org/10.1002/app.49649

    Article  CAS  Google Scholar 

  36. Xiong Z, Lin H, Zhong Y, Qin Y, Li T, Liu F (2017) Robust superhydrophilic polylactide (PLA) membranes with a TiO2 nano-particle inlaid surface for oil/water separation. J Mater Chem A 5(14):6538–6545. https://doi.org/10.1039/C6ta11156d

    Article  CAS  Google Scholar 

  37. Selatile MK, Ojijo V, Sadiku R, Ray SS (2020) Development of bacterial-resistant electrospun polylactide membrane for air filtration application: Effects of reduction methods and their loadings. Polym Degrad Stab 178:109205. https://doi.org/10.1016/J.POLYMDEGRADSTAB.2020.109205

    Article  CAS  Google Scholar 

  38. Nicosia A et al (2015) Air filtration and antimicrobial capabilities of electrospun PLA/PHB containing ionic liquid. Sep Purif Technol 154:154–160. https://doi.org/10.1016/J.SEPPUR.2015.09.037

    Article  CAS  Google Scholar 

  39. Qin Y et al (2020) Mechanically robust Janus poly(lactic acid) hybrid fibrous membranes toward highly efficient switchable separation of surfactant-stabilized oil/water emulsions. ACS Appl Mater Interfaces 12(45):50879–50888. https://doi.org/10.1021/acsami.0c15310

    Article  CAS  Google Scholar 

  40. Sabbatier G et al (2015) Design, degradation mechanism and long-term cytotoxicity of poly(l -lactide) and poly(lactide-co-ε-caprolactone) terpolymer film and air-spun nanofiber scaffold. Macromol Biosci 15(10):1392–1410. https://doi.org/10.1002/mabi.201500130

    Article  CAS  Google Scholar 

  41. Fryczkowski R, Fryczkowska B, Biniaś W, Janicki J (2013) Morphology of fibrous composites of PLA and PVDF. Compos Sci Technol 89:186–193. https://doi.org/10.1016/j.compscitech.2013.10.005

    Article  CAS  Google Scholar 

  42. Feng J (2017) Preparation and performance control of poly(lactic acid) fiber/polyurethane composite porous biomimetic-aligned scaffolds. J Ind Text 46(6):1297–1318. https://doi.org/10.1177/1528083715624257

    Article  CAS  Google Scholar 

  43. Datta R, Henry M (2006) Lactic acid: recent advances in products, processes and technologies—a review. J Chem Technol Biotechnol 81(7):1119–1129. https://doi.org/10.1002/JCTB.1486

    Article  CAS  Google Scholar 

  44. Singhvi MS, Zinjarde SS, Gokhale DV (2019) Polylactic acid: synthesis and biomedical applications. J Appl Microbiol 127(6). Blackwell Publishing Ltd, pp. 1612–1626. https://doi.org/10.1111/jam.14290

  45. Miyoshi R, Hashimoto N, Koyanagi K, Sumihiro Y, Sakai T (1996) Biodegradable poly(lactic acid) with high molecular weight. Int Polym Proc 11(4):320–328. https://doi.org/10.3139/217.960320

    Article  CAS  Google Scholar 

  46. Miyoshi R, Hashimoto N, Koyanagi K, Sumihiro Y, Sakai T (1996) Biodegradable poly(lactic acid) with high molecular weight: Preparation by continuous melt-polycondensation process combined with reactive processing technology. Int Polym Proc 11(4):320–328. https://doi.org/10.3139/217.960320/HTML

    Article  CAS  Google Scholar 

  47. Achmad F, Yamane K, Quan S, Kokugan T (2009) Synthesis of polylactic acid by direct polycondensation under vacuum without catalysts, solvents and initiators. Chem Eng J 151(1–3):342–350. https://doi.org/10.1016/J.CEJ.2009.04.014

    Article  CAS  Google Scholar 

  48. Nagahata R, Sano D, Suzuki H, Takeuchi K (2007) Microwave-assisted single-step synthesis of poly(lactic acid) by direct polycondensation of lactic acid. Macromol Rapid Commun 28(4):437–442. https://doi.org/10.1002/MARC.200600715

    Article  CAS  Google Scholar 

  49. Ovitt TM, Coates GW (1999) Stereoselective ring-opening polymerization of meso-lactide: synthesis of syndiotactic poly(lactic acid). J Am Chem Soc 121(16):4072–4073. https://doi.org/10.1021/JA990088K

  50. Boua-In K, Chaiyut N, Ksapabutr B (2010) Preparation of polylactide by ring-opening polymerisation of lactide. Optoelectron Adv Mater—Rapid Commun 4:1404–1407

  51. Cheng Y, Deng S, Chen P, Ruan R (2009) Polylactic acid (PLA) synthesis and modifications: a review. Front Chem China 2009 4:3 4(3):259–264. https://doi.org/10.1007/S11458-009-0092-X

  52. Lopes MS, Jardini AL, Filho RM (2014) Synthesis and characterizations of poly (lactic acid) by ring-opening polymerization for biomedical applications. Chem Eng Trans 38:331–336. https://doi.org/10.3303/CET1438056

    Article  Google Scholar 

  53. Lim LT, Auras R, Rubino M (2008) Processing technologies for poly(lactic acid). Prog Polym Sci (Oxford) 33(8):820–852. https://doi.org/10.1016/j.progpolymsci.2008.05.004

    Article  CAS  Google Scholar 

  54. Kulkarni RK, Moore EG, Hegyeli AF, Leonard F (1971) Biodegradable poly(lactic acid) polymers. J Biomed Mater Res 5(3):169–181. https://doi.org/10.1002/jbm.820050305

    Article  CAS  Google Scholar 

  55. Granados-Hernández MV et al (2018) In vitro and in vivo biological characterization of poly(lactic acid) fiber scaffolds synthesized by air jet spinning. J Biomed Mater Res—Part B Appl Biomater 106(6):2435–2446. https://doi.org/10.1002/jbm.b.34053

    Article  CAS  Google Scholar 

  56. Chanes-cuevas OA, Arellano-sánchez U, Álvarez-gayosso CA (2020) Synthesis of PLA/SBA-15 composite scaffolds for bone tissue engineering 2. Exp Sect 23(5)

  57. Zhou H, Tang Y, Wang Z, Zhang P, Zhu Q (2018) Cotton-like micro- and nanoscale poly(lactic acid) nonwoven fibers fabricated by centrifugal melt-spinning for tissue engineering. RSC Adv 8(10):5166–5179. https://doi.org/10.1039/c7ra07453k

    Article  CAS  Google Scholar 

  58. An Tran NH, Brünig H, Hinüber C, Heinrich G (2014) Melt spinning of biodegradable nanofibrillary structures from poly(lactic acid) and poly(vinyl alcohol) blends. Macromol Mater Eng 299(2):219–227. https://doi.org/10.1002/mame.201300125

  59. Persson M, Cho SW, Skrifvars M (2013) The effect of process variables on the properties of melt-spun poly(lactic acid) fibres for potential use as scaffold matrix materials. J Mater Sci 48(8):3055–3066. https://doi.org/10.1007/s10853-012-7022-x

    Article  CAS  Google Scholar 

  60. Cui L, Zhang N, Cui W, Zhang P, Chen X (2015) A novel nano/micro-fibrous scaffold by melt-spinning method for bone tissue engineering. J Bionic Eng 12(1):117–128. https://doi.org/10.1016/s1672-6529(14)60106-2

    Article  Google Scholar 

  61. Chung S, Gamcsik MP, King MW (2011) Novel scaffold design with multi-grooved PLA fibers. Biomed Mater 6(4). https://doi.org/10.1088/1748-6041/6/4/045001

  62. Zhang T et al (2020) Solution blow spinning of polylactic acid to prepare fibrous oil adsorbents through morphology optimization with response surface methodology. J Polym Environ 28(3):812–825. https://doi.org/10.1007/s10924-019-01617-6

    Article  CAS  Google Scholar 

  63. Li R et al (2020) Polycaprolactone/poly(L-lactic acid) composite micro/nanofibrous membrane prepared through solution blow spinning for oil adsorption. Mater Chem Phys 241:122338. https://doi.org/10.1016/j.matchemphys.2019.122338

    Article  CAS  Google Scholar 

  64. Oliveira JE et al (2013) Development of poly(lactic acid) nanostructured membranes for the controlled delivery of progesterone to livestock animals. Mater Sci Eng, C 33(2):844–849. https://doi.org/10.1016/j.msec.2012.10.032

    Article  CAS  Google Scholar 

  65. Bonan RF et al (2017) Poly(lactic acid)/poly(vinyl pyrrolidone) membranes produced by solution blow spinning: structure, thermal, spectroscopic, and microbial barrier properties. J Appl Polym Sci 134(19). https://doi.org/10.1002/app.44802

  66. Medeiros ES, Glenn GM, Klamczynski AP, Orts WJ, Mattoso LHC (2009) Solution blow spinning: a new method to produce micro- and nanofibers from polymer solutions. J Appl Polym Sci 113(4):2322–2330. https://doi.org/10.1002/app.30275

    Article  CAS  Google Scholar 

  67. da S. Parize DD et al (2017) Solution blow spun nanocomposites of poly(lactic acid)/cellulose nanocrystals from Eucalyptus kraft pulp. Carbohydr Polym 174:923–932. https://doi.org/10.1016/j.carbpol.2017.07.019

  68. Kamyar N et al (2018) Exploiting inherent instability of 2D black phosphorus for controlled phosphate release from blow-spun poly(lactide- co-glycolide) nanofibers. ACS Appl Nano Mater 1(8):4190–4197. https://doi.org/10.1021/acsanm.8b00938

    Article  CAS  Google Scholar 

  69. Ye B et al (2020) Solution-blow spun PLA/SiO2 nanofiber membranes toward high efficiency oil/water separation. J Appl Polym Sci 137(37):1–9. https://doi.org/10.1002/app.49103

    Article  CAS  Google Scholar 

  70. Tomecka E, Wojasinski M, Jastrzebska E, Chudy M, Ciach T, Brzozka Z (2017) Poly(L-lactic acid) and polyurethane nanofibers fabricated by solution blow spinning as potential substrates for cardiac cell culture. Mater Sci Eng, C 75:305–316. https://doi.org/10.1016/j.msec.2017.02.055

    Article  CAS  Google Scholar 

  71. Cerna Nahuis LE, Alvim Valente C, de Freitas Oliveira D, de Souza Basso NR, Antonio Malmonge J (2019) Preparation and characterization of polymeric microfibers of PLGA and PLGA/PPy composite fabricated by solution blow spinning. Macromolecular Symposia 383(1). https://doi.org/10.1002/masy.201800030

  72. Bienek DR, Hoffman KM, Tutak W (2016) Blow-spun chitosan/PEG/PLGA nanofibers as a novel tissue engineering scaffold with antibacterial properties. J Mater Sci—Mater Med 27(9):0–1. https://doi.org/10.1007/s10856-016-5757-7

    Article  CAS  Google Scholar 

  73. Lin Xu X et al (2016) Solution blowing of chitosan/PLA/PEG hydrogel nanofibers for wound dressing. Fibers Polym 17(2):205–211. https://doi.org/10.1007/s12221-016-5800-9

  74. Ahmed FE, Lalia BS, Hashaikeh R (2015) A review on electrospinning for membrane fabrication : challenges and applications. DES 356:15–30. https://doi.org/10.1016/j.desal.2014.09.033

    Article  CAS  Google Scholar 

  75. Xue J, Wu T, Dai Y, Xia Y (2019) Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem Rev 119(8):5298–5415. https://doi.org/10.1021/acs.chemrev.8b00593

    Article  CAS  Google Scholar 

  76. Yue M et al (2015) Switchable hydrophobic/hydrophilic surface of electrospun poly (L-lactide) membranes obtained by CF4 microwave plasma treatment

  77. Tasselli F (2004) Membrane preparation techniques, no. c, pp 1–3. https://doi.org/10.1007/978-3-642-40872-4

  78. Figoli A, Marino T, Galiano F (2016). Polymeric membranes in biorefinery. https://doi.org/10.1016/B978-0-08-100451-7.00002-5

    Article  Google Scholar 

  79. Wang H et al (2019) Effect of temperature on the morphology of poly (lactic acid) porous membrane prepared via phase inversion induced by water droplets. Int J Biol Macromol 133:902–910. https://doi.org/10.1016/j.ijbiomac.2019.04.145

    Article  CAS  Google Scholar 

  80. Figoli A et al (2014) Towards non-toxic solvents for membrane preparation: a review. Green Chem 16(9):4034–4059. https://doi.org/10.1039/c4gc00613e

    Article  CAS  Google Scholar 

  81. Kim JF (2020) Recent progress on improving the sustainability of membrane fabrication. J Membr Sci Res 6(3):241–250. https://doi.org/10.22079/JMSR.2019.106501.1260

    Article  CAS  Google Scholar 

  82. Chinyerenwa AC et al (2018) Structure and thermal properties of porous polylactic acid membranes prepared via phase inversion induced by hot water droplets. Polymer 141:62–69. https://doi.org/10.1016/j.polymer.2018.03.011

    Article  CAS  Google Scholar 

  83. Do AV, Khorsand B, Geary SM, Salem AK (2015) 3D printing of scaffolds for tissue regeneration applications. Adv Healthcare Mater 4(12):1742–1762. https://doi.org/10.1002/adhm.201500168

    Article  CAS  Google Scholar 

  84. Choi WJ et al (2020) Rapid development of dual porous poly(lactic acid) foam using fused deposition modeling (FDM) 3D printing for medical scaffold application. Mater Sci Eng, C 110:110693. https://doi.org/10.1016/j.msec.2020.110693

    Article  CAS  Google Scholar 

  85. Rosenzweig DH, Carelli E, Steffen T, Jarzem P, Haglund L (2015) 3D-printed ABS and PLA scaffolds for cartilage and nucleus pulposus tissue regeneration. Int J Mol Sci 16(7):15118–15135. https://doi.org/10.3390/ijms160715118

    Article  CAS  Google Scholar 

  86. Serra T, Planell JA, Navarro M (2013) High-resolution PLA-based composite scaffolds via 3-D printing technology. Acta Biomater 9(3):5521–5530. https://doi.org/10.1016/j.actbio.2012.10.041

    Article  CAS  Google Scholar 

  87. Zhang HY, Jiang HB, Ryu JH, Kang H, Kim KM, Kwon JS (2019) Comparing properties of variable pore-sized 3D-printed PLA membrane with conventional PLA membrane for guided bone/tissue regeneration. Materials 12(10):1–11. https://doi.org/10.3390/MA12101718

    Article  Google Scholar 

  88. Heo DN, Castro NJ, Lee SJ, Noh H, Zhu W, Zhang LG (2017) Enhanced bone tissue regeneration using a 3D printed microstructure incorporated with a hybrid nano hydrogel. Nanoscale 9(16):5055–5062. https://doi.org/10.1039/c6nr09652b

    Article  CAS  Google Scholar 

  89. Xing R, Huang R, Qi W, Su R, He Z (2018) Three-dimensionally printed bioinspired superhydrophobic PLA membrane for oil-water separation. AIChE J 64(10):3700–3708. https://doi.org/10.1002/aic.16347

    Article  CAS  Google Scholar 

  90. Shuai C, Yang B, Peng S, Li Z (2013) Development of composite porous scaffolds based on poly(lactide-co- glycolide)/nano-hydroxyapatite via selective laser sintering. Int J Adv Manuf Technol 69(1–4):51–57. https://doi.org/10.1007/s00170-013-5001-2

    Article  Google Scholar 

  91. Zhou WY, Lee SH, Wang M, Cheung WL, Ip WY (2008) Selective laser sintering of porous tissue engineering scaffolds from poly(L-lactide)/carbonated hydroxyapatite nanocomposite microspheres. J Mater Sci—Mater Med 19(7):2535–2540. https://doi.org/10.1007/s10856-007-3089-3

    Article  CAS  Google Scholar 

  92. Duan B, Wang M, Zhou WY, Cheung WL, Li ZY, Lu WW (2010) Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Acta Biomater 6(12):4495–4505. https://doi.org/10.1016/j.actbio.2010.06.024

    Article  CAS  Google Scholar 

  93. Jung Y et al (2005) A poly(lactic acid)/calcium metaphosphate composite for bone tissue engineering. Biomaterials 26(32):6314–6322. https://doi.org/10.1016/j.biomaterials.2005.04.007

    Article  CAS  Google Scholar 

  94. Singha S, Hedenqvist MS (2020) A review on barrier properties of poly(lactic acid)/clay nanocomposites. Polymers 12(5). https://doi.org/10.3390/POLYM12051095

  95. Guo P et al (2020) Facile fabrication of methylcellulose/PLA membrane with improved properties. Coatings 10(5). https://doi.org/10.3390/COATINGS10050499

  96. Pearce G (2007) Introduction to membranes: Membrane selection. Filtr Sep 44(3):35–37. https://doi.org/10.1016/S0015-1882(07)70083-6

    Article  CAS  Google Scholar 

  97. Wang Z, Yu W, Zhou C (2015) Preparation of polyethylene microporous membranes with high water permeability from thermally induced multiple phase transitions. Polymer 56:535–544. https://doi.org/10.1016/j.polymer.2014.11.032

    Article  CAS  Google Scholar 

  98. Luo F, Fortenberry A, Ren J, Qiang Z (2020) Recent progress in enhancing poly(lactic acid) stereocomplex formation for material property improvement. Front Chem 8(August):1–8. https://doi.org/10.3389/fchem.2020.00688

    Article  CAS  Google Scholar 

  99. Nofar M, Sacligil D, Carreau PJ, Kamal MR, Heuzey MC (2019) Poly (lactic acid) blends: processing, properties and applications. Int J Biol Macromol 125:307–360. https://doi.org/10.1016/j.ijbiomac.2018.12.002

    Article  CAS  Google Scholar 

  100. Jem KJ, Tan B (2020) The development and challenges of poly (lactic acid) and poly (glycolic acid). Adv Ind Eng Polym Res 3(2):60–70. https://doi.org/10.1016/j.aiepr.2020.01.002

    Article  Google Scholar 

  101. Zong X, Ran S, Kim KS, Fang D, Hsiao BS, Chu B (2003) Structure and morphology changes during in vitro degradation of electrospun poly(glycolide-co-lactide) nanofiber membrane. Biomacromolecules 4(2):416–423. https://doi.org/10.1021/bm025717o

    Article  CAS  Google Scholar 

  102. Chen Y, Lin J, Wan Y, Fei Y, Wang H, Gao W (2012) Preparation and blood compatibility of electrospun PLA/curcumin composite membranes. Fibers Polym 13(10):1254–1258. https://doi.org/10.1007/s12221-012-1254-x

    Article  CAS  Google Scholar 

  103. Xiong Z, Liu F, Lin H, Li J, Wang Y (2016) Covalent bonding of heparin on the crystallized poly(lactic acid) (PLA) membrane to improve hemocompability via surface cross-linking and glycidyl ether reaction. ACS Biomater Sci Eng 2(12):2207–2216. https://doi.org/10.1021/acsbiomaterials.6b00413

    Article  CAS  Google Scholar 

  104. Luo H, Hu J, Dou Y, Yang Y, Hou J (2020) Rapid visual alcohol dipstick based on transparent detection of hierarchical structured PLA/PVDF electrospun nanofibrous membrane. Compos Commun 22. https://doi.org/10.1016/j.coco.2020.100516

  105. Wang Y, Qian J, Liu T, Xu W, Zhao N, Suo A (2017) Electrospun PBLG/PLA nanofiber membrane for constructing in vitro 3D model of melanoma. Mater Sci Eng, C 76:313–318. https://doi.org/10.1016/j.msec.2017.03.098

    Article  CAS  Google Scholar 

  106. Katsoufidou K, Yiantsios SG, Karabelas AJ (2005) A study of ultrafiltration membrane fouling by humic acids and flux recovery by backwashing: experiments and modeling. J Membr Sci 266(1–2):40–50. https://doi.org/10.1016/J.MEMSCI.2005.05.009

    Article  CAS  Google Scholar 

  107. Moriya A, Maruyama T, Ohmukai Y, Sotani T, Matsuyama H (2009) Preparation of poly(lactic acid) hollow fiber membranes via phase separation methods. J Membr Sci 342(1–2):307–312. https://doi.org/10.1016/j.memsci.2009.07.005

    Article  CAS  Google Scholar 

  108. Dasari A, Quirós J, Herrero B, Boltes K, García-Calvo E, Rosal R (2012) Antifouling membranes prepared by electrospinning polylactic acid containing biocidal nanoparticles. J Membr Sci 405–406:134–140. https://doi.org/10.1016/J.MEMSCI.2012.02.060

    Article  Google Scholar 

  109. Xiong Z, Lin H, Liu F, Yu X, Wang Y, Wang Y (2016) A new strategy to simultaneously improve the permeability, heat-deformation resistance and antifouling properties of polylactide membrane via bio-based β-cyclodextrin and surface crosslinking. J Membr Sci 513:166–176. https://doi.org/10.1016/j.memsci.2016.04.036

    Article  CAS  Google Scholar 

  110. Shen P, Moriya A, Rajabzadeh S, Maruyama T, Matsuyama H (2013) Improvement of the antifouling properties of poly (lactic acid) hollow fiber membranes with poly (lactic acid)-polyethylene glycol-poly (lactic acid) copolymers. Desalination 325:37–39. https://doi.org/10.1016/j.desal.2013.06.012

    Article  CAS  Google Scholar 

  111. Vargas-Villagran H et al (2011) Non-woven membranes electrospun from polylactic acid incorporating silver nanoparticles as biocide. Mater Res Soc Symp Proc 1376(December 2014):78–83. https://doi.org/10.1557/opl.2012.285

  112. Jiang S, Lv J, Ding M, Li Y, Wang H, Jiang S (2016) Release behavior of tetracycline hydrochloride loaded chitosan/poly(lactic acid) antimicrobial nanofibrous membranes. Mater Sci Eng, C 59:86–91. https://doi.org/10.1016/j.msec.2015.10.005

    Article  CAS  Google Scholar 

  113. Lin K et al (2020) Selective laser sintered nano-HA/PDLLA composite microspheres for bone scaffolds applications. Rapid Prototyp J 26(6):1131–1143. https://doi.org/10.1108/RPJ-06-2019-0155

    Article  Google Scholar 

  114. Carfi Pavia F, Conoscenti G, Greco S, la Carrubba V, Ghersi G, Brucato V (2018) Preparation, characterization and in vitro test of composites poly-lactic acid/hydroxyapatite scaffolds for bone tissue engineering. Int J Biol Macromol 119:945–953. https://doi.org/10.1016/j.ijbiomac.2018.08.007

  115. Han J et al (2018) Hydroxyapatite nanowires modified polylactic acid membrane plays barrier/osteoinduction dual roles and promotes bone regeneration in a rat mandible defect model. J Biomed Mater Res—Part A 106(12):3099–3110. https://doi.org/10.1002/jbm.a.36502

    Article  CAS  Google Scholar 

  116. Saini P, Arora M, Kumar MNVR (2016) Poly(lactic acid) blends in biomedical applications. Adv Drug Deliv Rev 107:47–59. https://doi.org/10.1016/j.addr.2016.06.014

    Article  CAS  Google Scholar 

  117. Liu S, Qin S, He M, Zhou D, Qin Q, Wang H (2020) Current applications of poly(lactic acid) composites in tissue engineering and drug delivery Shan. Compos Part B Eng 199(May):108238. https://doi.org/10.1016/j.compositesb.2020.108238

  118. le Marec PE et al (2014) Influence of melt processing conditions on poly(lactic acid) degradation: Molar mass distribution and crystallization. Polym Degrad Stab 110:353–363. https://doi.org/10.1016/J.POLYMDEGRADSTAB.2014.10.003

    Article  Google Scholar 

  119. Gaona LA, Gómez Ribelles JL, Perilla JE, Lebourg M Hydrolytic degradation of PLLA/PCL microporous membranes prepared by freeze extraction. Polym Degrad Stab 97(9):1621–1632. https://doi.org/10.1016/J.POLYMDEGRADSTAB.2012.06.031

  120. Dias JC, Ribeiro C, Sencadas V, Botelho G, Ribelles JLG, Lanceros-Mendez S (2012) Influence of fiber diameter and crystallinity on the stability of electrospun poly(l-lactic acid) membranes to hydrolytic degradation. Polym Testing 31(6):770–776. https://doi.org/10.1016/J.POLYMERTESTING.2012.05.007

    Article  CAS  Google Scholar 

  121. Gorrasi G, Pantani R Hydrolysis and biodegradation of poly(lactic acid). Adv Polym Sci 279(May 2017):119–151. https://doi.org/10.1007/12_2016_12

  122. Li S, McCarthy S (1999) Influence of crystallinity and stereochemistry on the enzymatic degradation of poly(lactide)s. Macromolecules 32(13):4454–4456. https://doi.org/10.1021/ma990117b

    Article  CAS  Google Scholar 

  123. Vert M, Mauduit J, Li S (1994) Biodegradation of PLA/GA polymers: increasing complexity 15(15):1209–1213

  124. Ranjbar-Mohammadi M, Prabhakaran MP, Bahrami SH, Ramakrishna S (2016) Gum tragacanth/poly(l-lactic acid) nanofibrous scaffolds for application in regeneration of peripheral nerve damage. Carbohydr Polym 140(December 2017):104–112. https://doi.org/10.1016/j.carbpol.2015.12.012

  125. Naseem R, Zhao L, Liu Y, Silberschmidt VV (2017) Experimental and computational studies of poly-L-lactic acid for cardiovascular applications: recent progress. Mech Adv Mater Mod Process 3(1). https://doi.org/10.1186/s40759-017-0028-y

  126. Miyajima M, Koshika A, Okada J, Ikeda M (1999) Mechanism of drug release from poly(l-lactic acid) matrix containing acidic or neutral drugs. J Control Release 60(2–3):199–209. https://doi.org/10.1016/S0168-3659(99)00083-8

    Article  CAS  Google Scholar 

  127. Santos LG et al (2013) Electrospun membranes of poly(lactic acid) (PLA) used as scaffold in drug delivery of extract of sedum dendroideum. J Nanosci Nanotechnol 13(7):4694–4702. https://doi.org/10.1166/jnn.2013.7194

    Article  CAS  Google Scholar 

  128. Agarwal M, Koelling KW, Chalmers JJ (1998) Characterization of the degradation of polylactic acid polymer in a solid substrate environment

  129. Ghorpade VM, Gennadios A, Hanna MA (2001) Laboratory composting of extruded poly(lactic acid) sheets. Biores Technol 76(1):57–61. https://doi.org/10.1016/S0960-8524(00)00077-8

    Article  CAS  Google Scholar 

  130. Lunt J (1998) Large-scale production, properties and commercial applications of polylactic acid polymers. Polym Degrad Stab 59(1–3):145–152. https://doi.org/10.1016/S0141-3910(97)00148-1

    Article  CAS  Google Scholar 

  131. Karamanlioglu M, Houlden A, Robson GD (2014) Isolation and characterisation of fungal communities associated with degradation and growth on the surface of poly(lactic) acid (PLA) in soil and compost. Int Biodeterior Biodegrad 95(PB):301–310. https://doi.org/10.1016/J.IBIOD.2014.09.006

  132. da S. D et al (2018) Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chem Eng J (Lausanne, Switzerland: 1996) 340:9–14. https://doi.org/10.1016/J.CEJ.2018.01.010

  133. Yu H, Huang N, Wang C, Tang Z (2003) Modeling of poly(L-lactide) thermal degradation: theoretical prediction of molecular weight and polydispersity index

  134. Kopinke F, Remmler M, Mackenzie K, Milder M (1996) Thermal decomposition of biodegradable polyesters-11. Poly(lactic acid)

  135. Ozdemir E, Hacaloglu J (2016) Thermal degradation of polylactide and its electrospun fiber. Fibers Polym 2016 17:1 17(1):66–73. https://doi.org/10.1007/S12221-016-5679-5

  136. Bonan RF et al (2017) Poly(lactic acid)/poly(vinyl pyrrolidone) membranes produced by solution blow spinning: structure, thermal, spectroscopic, and microbial barrier properties. J Appl Polym Sci 134(19):1–9. https://doi.org/10.1002/app.44802

    Article  CAS  Google Scholar 

  137. Ozdemir E, Lekesiz TO, Hacaloglu J (2016) Polylactide/organically modified montmorillonite composites; effects of organic modifier on thermal characteristics. Polym Degrad Stab 134:87–96. https://doi.org/10.1016/J.POLYMDEGRADSTAB.2016.09.028

    Article  CAS  Google Scholar 

  138. Yuzay IE, Auras R, Soto-Valdez H, Selke S (2010) Effects of synthetic and natural zeolites on morphology and thermal degradation of poly(lactic acid) composites. Polym Degrad Stab 95(9):1769–1777. https://doi.org/10.1016/J.POLYMDEGRADSTAB.2010.05.011

    Article  CAS  Google Scholar 

  139. Dai X, Cao Y, Shi X, Wang X (2016) Non-isothermal crystallization kinetics, thermal degradation behavior and mechanical properties of poly(lactic acid)/MOF composites prepared by melt-blending methods. RSC Adv 6(75):71461–71471. https://doi.org/10.1039/C6RA14190K

    Article  CAS  Google Scholar 

  140. Sencadas V et al (2012) Thermal properties of electrospun poly(lactic acid) membranes. J Macromol Sci Part B Phys 51(3):411–424. https://doi.org/10.1080/00222348.2011.597325

    Article  CAS  Google Scholar 

  141. Effect of molecular weight and crystallinity on poly(lactic acid) mechanical properties—Perego—1996—Journal of Applied Polymer Science - Wiley Online Library. https://onlinelibrary.wiley.com/doi/abs/https://doi.org/10.1002/(SICI)1097-4628(19960103)59:1%3C37::AID-APP6%3E3.0.CO;2-N. Accessed 29 Jun 2021

  142. Botelho G, Machado AV, Araújo A, Lema Botelho G, Silva M, Machado AV (2013) UV stability of poly(lactic acid) nanocomposites. https://doi.org/10.17265/2161-6221/2013.02.001

  143. Sakai W, Kinoshita M, Nagata M, Tsutsumi N (2001) ESR studies of photosensitized degradation of poly(L-lactic acid) via photoionization of dopant

  144. Gupta MC, Deshmukh VG (1983) Radiation effects on poly(lactic acid)

  145. Blasi P (2019) Poly(lactic acid)/poly(lactic-co-glycolic acid)-based microparticles: an overview. J Pharm Investig 49(4). Springer Netherlands, pp 337–346. https://doi.org/10.1007/s40005-019-00453-z

  146. Liu S et al (2019) Enhanced surface hydrophilicity of polylactic acid sutures treated by lipase and chitosan. Text Res J 89(16):3291–3302. https://doi.org/10.1177/0040517518811936

    Article  CAS  Google Scholar 

  147. Kamaly N, Yameen B, Wu J, Farokhzad OC (2016) Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev 116(4). American Chemical Society, pp 2602–2663. https://doi.org/10.1021/acs.chemrev.5b00346.

  148. Robert PM, Frank RM (1994) Periodontal guided tissue regeneration with a new resorbable polylactic acid membrane. J Periodontol 65(5):414–422. https://doi.org/10.1902/jop.1994.65.5.414

    Article  CAS  Google Scholar 

  149. Gao A, Liu F, Xue L (2014) Preparation and evaluation of heparin-immobilized poly (lactic acid) (PLA) membrane for hemodialysis. J Membr Sci 452:390–399. https://doi.org/10.1016/j.memsci.2013.10.016

    Article  CAS  Google Scholar 

  150. Chung S, Gamcsik MP, King MW (2011) Novel scaffold design with multi-grooved PLA fibers. Biomed Mater 6(4):45001. https://doi.org/10.1088/1748-6041/6/4/045001

    Article  CAS  Google Scholar 

  151. Bettahalli NMS, Steg H, Wessling M, Stamatialis D (2011) Development of poly(l-lactic acid) hollow fiber membranes for artificial vasculature in tissue engineering scaffolds. J Membr Sci 371(1–2):117–126. https://doi.org/10.1016/j.memsci.2011.01.026

    Article  CAS  Google Scholar 

  152. Miyajima M, Koshika A, Okada J, Ikeda M (1999) Effect of polymer/basic drug interactions on the two-stage diffusion-controlled release from a poly(l-lactic acid) matrix. J Control Release 61(3):295–304. https://doi.org/10.1016/S0168-3659(99)00149-2

    Article  CAS  Google Scholar 

  153. Miyajima M, Koshika A, Okada J, Kusai A, Ikeda M (1998) Factors influencing the diffusion-controlled release of papaverine from poly (l-lactic acid) matrix. J Control Release 56(1–3):85–94. https://doi.org/10.1016/S0168-3659(98)00076-5

    Article  CAS  Google Scholar 

  154. Zhu LJ, Liu F, Yu XM, Gao AL, Xue LX (2015) Surface zwitterionization of hemocompatible poly(lactic acid) membranes for hemodiafiltration. J Membr Sci 475:469–479. https://doi.org/10.1016/j.memsci.2014.11.004

    Article  CAS  Google Scholar 

  155. Zare S, Kargari A (2020) The 11th international chemical engineering congress & exhibition (IChEC 2020) Fouman, Iran, no. IChEC, pp 15–17

  156. Wang Z, Pan Z (2015) Preparation of hierarchical structured nano-sized/porous poly(lactic acid) composite fibrous membranes for air filtration. Appl Surf Sci 356:1168–1179. https://doi.org/10.1016/j.apsusc.2015.08.211

    Article  CAS  Google Scholar 

  157. Cao Q et al (2020) Electrospun bead-in-string fibrous membrane prepared from polysilsesquioxane-immobilising poly(lactic acid) with low filtration resistance for air filtration. J Polym Res 27(1). https://doi.org/10.1007/s10965-019-1919-x

  158. Li H, Wang Z, Zhang H, Pan Z (2018) Nanoporous PLA/(Chitosan Nanoparticle) composite fibrous membranes with excellent air filtration and antibacterial performance. Polymers 10(10):10–12. https://doi.org/10.3390/polym10101085

    Article  CAS  Google Scholar 

  159. Liu Z, Zhao J, Li W, Xing J, Xu L, He J (2019) Humidity-induced porous poly(lactic acid) membrane with enhanced flux for oil–water separation. Adsorpt Sci Technol 37(5–6):389–400. https://doi.org/10.1177/0263617418816200

    Article  CAS  Google Scholar 

  160. Su Y, Zhao Y, Zheng W, Yu H, Liu Y, Xu L (2020) Asymmetric Sc-PLA membrane with multi-scale microstructures: wettability, antifouling, and oil–water separation. ACS Appl Mater Interfaces 12(49):55520–55526. https://doi.org/10.1021/acsami.0c17545

    Article  CAS  Google Scholar 

  161. Zhu C, Jiang W, Hu J, Sun P, Li A, Zhang Q (2020) Polylactic acid nonwoven fabric surface modified with stereocomplex crystals for recyclable use in oil/water separation. ACS Appl Polym Mater 2(7):2509–2516. https://doi.org/10.1021/acsapm.9b01197

    Article  CAS  Google Scholar 

  162. Yamaoka T et al (2013) Elastic/adhesive double-layered PLA-PEG multiblock copolymer membranes for postoperative adhesion prevention. Polym Degrad Stab 98(11):2168–2176. https://doi.org/10.1016/j.polymdegradstab.2013.08.026

    Article  CAS  Google Scholar 

  163. Tanaka T, Lloyd DR (2004) Formation of poly(L-lactic acid) microfiltration membranes via thermally induced phase separation. J Membr Sci 238(1–2):65–73. https://doi.org/10.1016/j.memsci.2004.03.020

    Article  CAS  Google Scholar 

  164. Tanaka T, Ueno M, Watanabe Y, Kouya T, Taniguchi M, Lloyd DR (2011) Poly(L-lactic acid) microfiltration membrane formation via thermally induced phase separation with drying. J Chem Eng Jpn 44(7):467–475. https://doi.org/10.1252/jcej.11we030

    Article  CAS  Google Scholar 

  165. Tanaka T et al (2012) Formation of depth filter microfiltration membranes of poly(l-lactic acid) via phase separation. J Membr Sci 396:101–109. https://doi.org/10.1016/j.memsci.2012.01.002

    Article  CAS  Google Scholar 

  166. Hwang C, Park S, Kang IG, Kim HE, Han CM (2020) Tantalum-coated polylactic acid fibrous membranes for guided bone regeneration. Mater Sci Eng C 115(March):111112. https://doi.org/10.1016/j.msec.2020.111112

  167. Liang JW, Prasad G, Wang SC, Wu JL Lu SG (2019) Enhancement of the oil absorption capacity of poly(lactic acid) nano porous fibrous membranes derived via a facile electrospinning method. Appl Sci (Switzerland) 9(5). https://doi.org/10.3390/app9051014

  168. Yu Q et al (2020) Preparation and characterization of solvent-free fluids reinforced and plasticized polylactic acid fibrous membrane. Int J Biol Macromol 161:122–131. https://doi.org/10.1016/j.ijbiomac.2020.06.027

    Article  CAS  Google Scholar 

  169. JY-TK Ming-Ju Chen, Kreuter (1996) Nanoparticles and microparticles for drug and vaccine delivery. J Anat 189 (Pt 3, no. Ii):503–505. https://doi.org/10.1002/bit

  170. Ye J, Wang S, Lan W, Qin W, Liu Y (2018) Preparation and properties of polylactic acid-tea polyphenol-chitosan composite membranes. Int J Biol Macromol 117(2017):632–639. https://doi.org/10.1016/j.ijbiomac.2018.05.080

    Article  CAS  Google Scholar 

  171. Yamaoka T et al (2013) Elastic/adhesive double-layered PLA-PEG multiblock copolymer membranes for postoperative adhesion prevention. Polym Degrad Stab 98(11):2168–2176. https://doi.org/10.1016/j.polymdegradstab.2013.08.026

    Article  CAS  Google Scholar 

  172. Moriya A, Shen P, Ohmukai Y, Maruyama T, Matsuyama H (2012) Reduction of fouling on poly ( lactic acid ) hollow fiber membranes by blending with poly ( lactic acid )– polyethylene glycol – poly ( lactic acid ) triblock copolymers. J Membr Sci 415–416:712–717. https://doi.org/10.1016/j.memsci.2012.05.059

    Article  CAS  Google Scholar 

  173. Zhu L, Liu F, Yu X, Xue L (2015) Poly(lactic acid) hemodialysis membranes with poly(lactic acid)- block -poly(2-hydroxyethyl methacrylate) copolymer as additive: preparation, characterization, and performance. https://doi.org/10.1021/acsami.5b03951

  174. Wei Q, Wei W, Tian R, yan Wang L, Su ZG, Ma GH (2008) Preparation of uniform-sized PELA microspheres with high encapsulation efficiency of antigen by premix membrane emulsification. J Colloid Interface Sci 323(2):267–273. https://doi.org/10.1016/j.jcis.2008.04.058

  175. Xu X, Zhong W, Zhou S, Trajtman A, Alfa M (2010) Electrospun PEG—PLA nanofibrous membrane for sustained release of hydrophilic antibiotics. https://doi.org/10.1002/app

  176. Zebiri H et al (2021) Synthesis of PLA–poly(ether urethane)–PLA copolymers and design of biodegradable anti-adhesive membranes for orthopaedic applications. J Mater Chem B 9(3):832–845. https://doi.org/10.1039/D0TB02545C

    Article  CAS  Google Scholar 

  177. Gindt BP et al (2016) Nanoporous polysulfone membranes via a degradable block copolymer precursor for redox flow batteries. J Mater Chem A 4(11):4288–4295. https://doi.org/10.1039/c6ta00698a

    Article  CAS  Google Scholar 

  178. Galiano F et al (2019) Preparation and characterization of green polylactic acid (PLA) membranes for organic/organic separation by pervaporation. Clean Technol Environ Policy 21(1):109–120. https://doi.org/10.1007/s10098-018-1621-4

    Article  CAS  Google Scholar 

  179. Le Phuong HA, Izzati Ayob NA, Blanford CF, Mohammad Rawi NF, Szekely G (2019) Nonwoven membrane supports from renewable resources: bamboo fiber reinforced poly(lactic acid) composites. ACS Sustain Chem Eng 7(13):11885–11893. https://doi.org/10.1021/acssuschemeng.9b02516

  180. Liu L, Jin TZ, Coffin DR, Hicks KB (2009) Preparation of antimicrobial membranes: coextrusion of poly(lactic acid) and nisaplin in the presence of plasticizers. J Agric Food Chem 57(18):8392–8398. https://doi.org/10.1021/jf902213w

    Article  CAS  Google Scholar 

  181. Munteanu BS, Aytac Z, Pricope GM, Uyar T, Vasile C (2014) Polylactic acid (PLA)/Silver-NP/VitaminE bionanocomposite electrospun nanofibers with antibacterial and antioxidant activity. J Nanopart Res 16(10):1–12. https://doi.org/10.1007/s11051-014-2643-4

    Article  CAS  Google Scholar 

  182. Wang Z, Zhao C, Pan Z (2015) Porous bead-on-string poly(lactic acid) fibrous membranes for air filtration. J Colloid Interface Sci 441(November):121–129. https://doi.org/10.1016/j.jcis.2014.11.041

    Article  CAS  Google Scholar 

  183. Li L, Hashaikeh R, Arafat HA (2013) Development of eco-efficient micro-porous membranes via electrospinning and annealing of poly (lactic acid). J Membr Sci 436:57–67. https://doi.org/10.1016/j.memsci.2013.02.037

    Article  CAS  Google Scholar 

  184. Zou F, Sun X, Wang X (2019) Elastic, hydrophilic and biodegradable poly (1, 8-octanediol-co-citric acid)/polylactic acid nanofibrous membranes for potential wound dressing applications. Polym Degrad Stab 166:163–173. https://doi.org/10.1016/j.polymdegradstab.2019.05.024

    Article  CAS  Google Scholar 

  185. Abe GL et al (2020) Fabrication of novel poly(lactic acid/caprolactone) bilayer membrane for GBR application. Dent Mater 36(5):626–634. https://doi.org/10.1016/j.dental.2020.03.013

    Article  CAS  Google Scholar 

  186. Chen K et al (2018) Strong and biocompatible poly(lactic acid) membrane enhanced by Ti3C2Tz (MXene) nanosheets for Guided bone regeneration. Mater Lett 229:114–117. https://doi.org/10.1016/j.matlet.2018.06.063

    Article  CAS  Google Scholar 

  187. Binotto JP et al (2020) Poly (Lactic acid) membrane and Sedum dendroideum extract favors the repair of burns in rats. Acta Cirurgica Brasileira 35(3). https://doi.org/10.1590/s0102-865020200030000002

  188. Liu Z et al (2021) A flexible fibrous membrane based on copper( ii ) metal–organic framework/poly(lactic acid) composites with superior antibacterial performance. Biomater Sci 9(10):3851–3859. https://doi.org/10.1039/d1bm00164g

    Article  CAS  Google Scholar 

  189. Wang Z, Pan Z, Wang J, Zhao R (2016) A novel hierarchical structured poly(lactic acid)/titania fibrous membrane with excellent antibacterial activity and air filtration performance. J Nanomater 2016. https://doi.org/10.1155/2016/6272983

  190. Chala TF, Wu CM, Chou MH, Guo ZL (2018) Melt electrospun reduced tungsten oxide /polylactic acid fiber membranes as a photothermal material for light-driven interfacial water evaporation. ACS Appl Mater Interfaces 10(34):28955–28962. https://doi.org/10.1021/acsami.8b07434

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aarti More.

Ethics declarations

Conflict of interest

There is no conflict of interest by any of the authors for this review article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

More, N., Avhad, M., Utekar, S. et al. Polylactic acid (PLA) membrane—significance, synthesis, and applications: a review. Polym. Bull. 80, 1117–1153 (2023). https://doi.org/10.1007/s00289-022-04135-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04135-z

Keywords

Navigation