Skip to main content

Advertisement

Log in

Effect of Fe2O3 on the swelling, mechanical and thermal behaviour of NIPAM-based terpolymer

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The present work involves fabrication of PNIPAM-based terpolymeric hydrogel magnetite (Fe2O3) composite, i.e. ferrogels by coprecipitation method. The effects of Fe2O3 particles on the properties of resulting hydrogels were examined in terms of swelling studies at different temperatures, deswelling kinetics, mechanical and separation behaviour. The ferrogels were found to have higher equilibrium swelling percentage than conventional hydrogels. This shows that the thermoresponsive behaviour of the FeNTA233, FeNTH233 and FeNTM233 remains unchanged and having a range of phase transition temperature. It was observed that the ferrogels exhibited higher rate of swelling than the conventional hydrogels. FeNTA233, FeNTH233 and FeNTM233 showed non-Fickian type of diffusion. Deswelling study showed that ferrogels exhibited the faster shrinking rate and lost water dramatically. Thermogravimetric studies of ferrogels in air atmosphere were carried out to reveal the kinetics and mechanism of the thermal decomposition reaction through Coats–Redfern calculation and deconvolution procedures. The values of the apparent activation energy E and pre-exponential factor A in Arrhenius equation were calculated. Also, incorporation of magnetite particle increased the storage moduli and compression moduli of ferrogels by reinforcement of network structure. But, it was found that the separation efficiency of ferrogels reduced from the conventional hydrogels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. García-Peñas A, Sharma G, Kumar A, Galluzzi M, Du L, Stadler FJ (2019) Effect of cross-linker in poly (N-isopropyl acrylamide)-grafted-gelatin gels prepared by microwave-assisted synthesis. Chem Sel 4:10346–10351

    Google Scholar 

  2. Ghasemi S, Andami Z (2017) Polymeric schiff base metal complexes based on thermo-responsive PNIPAM: synthesis, characterization and catalytic activity. Chem Sel 2:5864–5870

    CAS  Google Scholar 

  3. Sharma S, Deepak KA, Afgan S, Kumar R (2017) Stimuli-responsive polymeric hydrogel-copper nanocomposite material for biomedical application and its alternative application to catalytic field. Chem Sel 2:11281–11287

    CAS  Google Scholar 

  4. Wang J, Zhu X, Wei L, Ye Y, Liu Y, Li J, Mei T, Wang X, Wang L (2018) Controlled shape transformation and loading release of smart hemispherical hybrid microgels triggered by ‘inner engines’. Chem Sel 3:4067–4074

    CAS  Google Scholar 

  5. Shekhar S, Mukherjee M, Sen AK (2012) Synthesis, characterization and protein separation efficiency of N-isopropylacrylamide-co-N-tertiary butylacrylamide-co-acrylamide-based hydrogel. Iran Polym J 21(12):895–904

    Article  CAS  Google Scholar 

  6. Shekhar S, Mukherjee M, Sen AK (2014) Synthesis and characterization of thermoresponsive terpolymer for protein separation. Int J Polym Mater Polym Biomater 63:389–397

    Article  CAS  Google Scholar 

  7. Shekhar S, Mukherjee M, Sen AK (2016) Swelling, thermal and mechanical properties of NIPAM based terpolymeric hydrogel. Polym Bull 73(1):125–145

    Article  CAS  Google Scholar 

  8. Shekhar S, Mukherjee M, Sen AK (2019) Effect of surfactant on the swelling and mechanical behavior of NIPAM-based terpolymer. Polym Bull. https://doi.org/10.1007/s00289-019-02940-7

    Article  Google Scholar 

  9. Bouklas N, Huang R (2012) Swelling kinetics of polymer gels: comparison of linear and nonlinear theories. Soft Matter 8:8194. https://doi.org/10.1039/c2sm25467k

    Article  CAS  Google Scholar 

  10. Boyde TRC (1976) Swelling and contraction aqueous solutions of polyacrylamide gel slabs in aqueous solutions. J Chromatogr 124:219–230. https://doi.org/10.1016/S0021-9673(00)89737-X

    Article  CAS  Google Scholar 

  11. Suzuki A, Tanaka T (1990) Phase transition in polymer gels induced by visible light. Nature 346:345–347

    Article  CAS  Google Scholar 

  12. Zhang XZ, Wang FJ, Chu CC (2003) Thermoresponsive hydrogel with rapid response dynamics. J Mater Sci Mater Med 14:451–455

    Article  Google Scholar 

  13. Zhang XZ, Wu DQ, Chu CC (2004) Synthesis, characterization, and controlled drug release of thermo sensitive IPN-PNIPAAM hydrogels. Biomaterials 25:3793–3805

    Article  CAS  Google Scholar 

  14. Haraguchi K, Takehisa T, Fan S (2002) Effects of clay content on the properties of nanocomposite hydrogels composed of poly(nisopropylacrylamide) and clay. Macromolecules 35:10162–10171

    Article  CAS  Google Scholar 

  15. Fei RC, George JT, Park J, Means AK, Grunlan MA (2013) Ultra-strong thermoresponsive double network hydrogels. Soft Matter 9:2912–2919

    Article  CAS  Google Scholar 

  16. Haraguchi K, Li H (2005) J. Control of the coil-to-globule transition and ultrahigh mechanical properties of PNIPA in nanocomposite hydrogels. Angew Chem Int Ed 44:6500–6504

    Article  CAS  Google Scholar 

  17. Xia LW, Xie R, Ju XJ, Wang W, Chen Q, Chu LY (2013) Nano-structured smart hydrogels with rapid response and high elasticity. Nat Commun 4:2226

    Article  Google Scholar 

  18. Alam MA, Takafuji M, Ihara H (2013) Thermosensitive hybrid hydrogels with silica nanoparticle-cross-linked polymer networks. J Colloid Interface Sci 405:109–117

    Article  Google Scholar 

  19. Xia M, Wu W, Liu F, Theato P, Zhu M (2015) Swelling behavior of thermosensitive nanocomposite hydrogels composed of oligo (ethylene glycol) methacrylates and clay. Eur Polym J 69:472–482

    Article  CAS  Google Scholar 

  20. Zhu Z, Li Y, Xu H, Peng X, Chen YN, Shang C, Zhang Q, Liu J, Wang H (2016) Tough and thermosensitive poly(N-isopropylacrylamide)/graphene oxide hydrogels with macroscopically oriented liquid crystalline structures. ACS Appl Mater Interfaces 8:15637–15644

    Article  CAS  Google Scholar 

  21. Schwall CT, Banerjee I, a. (2009) Micro- and nanoscale hydrogel systems for drug delivery and tissue engineering. Materials 2:577–612

    Article  CAS  Google Scholar 

  22. Hu X, Hao X, Wu Y et al (2013) Multifunctional hybrid silica nanoparticles for controlled doxorubicin loading and release with thermal and pH dual response. J Mater Chem B 1:1109–1118

    Article  CAS  Google Scholar 

  23. Cooperstein MA, Canavan HE (2013) Assessment of cytotoxicity of (Nisopropylacrylamide) and poly (N-isopropyl acrylamide)-coated surfaces. Biointerphases 8:19

    Article  Google Scholar 

  24. Philippova O, Barabanova A, Molchanov V, Khokhlov A (2011) Magnetic polymer beads: recent trends and developments in synthetic design and applications. Eur Polym J 47:542–559

    Article  CAS  Google Scholar 

  25. Lao LL, Ramanujan RV (2004) Magnetic and hydrogel composite materials for hyperthermia applications. J Mater Sci Mater Med 15:1061–1064

    Article  CAS  Google Scholar 

  26. Bhattarai N, Gunn J, Zhang M (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 62:83–99

    Article  CAS  Google Scholar 

  27. Sauzeddle F, Elaissari A, Pichot C (1999) Hydrophilic magnetic polymer latexes. Adsorption of magnetic iron oxide nanoparticles onto various cationic latexes. Colloid Polym Sci 277:846–855

    Article  Google Scholar 

  28. Sahiner N (2006) In situ metal particle preparation in cross-linked poly (2-acrylamido-2-methyl-1-propansulfonic acid) hydrogel networks. Colloid Polym Sci 285:283–292

    Article  CAS  Google Scholar 

  29. Gu S, Shiratori T, Konno M (2003) Synthesis of monodisperse, magnetic latex particles with polystyrene core. Colloid Polym Sci 281:1076–1081

    Article  CAS  Google Scholar 

  30. Caykara T, Yoruk D, Demirci S (2009) Preparation and characterization of poly (N-tert-butylacrylamide-co-acrylamide) ferrogel. J Appl Polym Sci 112:800–804

    Article  CAS  Google Scholar 

  31. Reddy NN, Mohana YM, Varaprasada K, Ravindraa S, Vimalaa K, Mohana Raju K (2011) Preparation and application of magnetic hydrogel nanocomposites for protein purification and metal absorption. J Polym Res 18:2285–2294

    Article  Google Scholar 

  32. Van Dyke JD, Kasperski KLJ (1993) Thermogravimetric study of polyacrylamide with evolved gas analysis. J Polym Sci Part A Polym Chem 31:1807–1823

    Article  Google Scholar 

  33. Coats AW, Redfern JP (1964) Kinetic parameters from thermogravimetric data. Nature 201:68–69

    Article  CAS  Google Scholar 

  34. Budrugeac P (2001) The evaluation of the non-isothermal kinetic parameters of the thermal and thermo-oxidative degradation of polymers and polymeric materials: its use and abuse. Polym Degrad Stab 71:185–187

    Article  CAS  Google Scholar 

  35. Othman MBH, Khan A, Ahmad Z, Zakaria MR, Ullah F, Akil HM (2016) Kinetic investigation and lifetime prediction of Cs–NIPAM–MBA-based thermo-responsive hydrogels. Carbohydr Polym 136:1182–1193

    Article  CAS  Google Scholar 

  36. Georgieva V, Zvezdova D, Vlaev L (2012) Non-isothermal kinetics of thermal degradation of chitin. J Therm Anal Calorim. https://doi.org/10.1007/s10973-012-2359-6

    Article  Google Scholar 

  37. Janković B (2015) Devolatilization kinetics of swine manure solid pyrolysis using deconvolution procedure. Determination of the bio-oil/liquid yields and char gasification. Fuel Process Technol 138:1–13

    Article  Google Scholar 

  38. Sivudu KS, Rhee KY (2009) Preparation and characterization of pH-responsive hydrogel magnetite nanocomposite. Colloid Surf A Physicochem Eng Asp 349:29–34

    Article  CAS  Google Scholar 

  39. Wicks ZW, Jones FN, Pappas SP (eds) (1999) Organic coating science and technology, 2nd edn. Wiley, NewYork

    Google Scholar 

  40. Zhu D, Lu M, Guo J, Liang L, Lan Y (2012) Effect of adamantyl methacrylate on the thermal and mechanical properties of thermosensitive poly(N-isopropylacrylamide) hydrogels. J Appl Polym Sci 124:155–163

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suman Shekhar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shekhar, S., Mukherjee, M. & Sen, A.K. Effect of Fe2O3 on the swelling, mechanical and thermal behaviour of NIPAM-based terpolymer. Polym. Bull. 78, 5029–5054 (2021). https://doi.org/10.1007/s00289-020-03336-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03336-8

Keywords

Navigation