Skip to main content
Log in

Effect of surfactant on the swelling and mechanical behavior of NIPAM-based terpolymer

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In the present study, the effects of PEG-PPG-PEG surfactant on the thermoresponsive properties, swelling behavior and mechanical strength of NIPAM-based terpolymers have been elaborated. NIPAM-based thermoresponsive terpolymers were synthesized by free radical polymerization in the absence and presence of surfactant PEG-PPG-PEG. The synthesized hydrogels were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), swelling kinetics, mechanical properties and scanning electron microscopy. FTIR confirmed the presence of monomer and absence of pore-forming agent PEG-PPG-PEG. TGA revealed the reaction zones during their degradation for which activation energy was calculated using Coats–Redfern method. The surface morphology of conventional hydrogels was found to be less porous than PEG-PPG-PEG modified hydrogels. PEG-PPG-PEG modified hydrogels showed higher rate of swelling and deswelling but less mechanical stability compared to conventional hydrogels. Also, PEG-PPG-PEG modified hydrogels have increased gel characteristic constant (k) and average diffusion coefficient in comparison with the conventional hydrogels. Separation efficiency of the modified hydrogels in bovine serum albumin (BSA) protein solution was found to be decreased which may be attributed to adsorption of BSA molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Ueoka H, Shimomura O, Nomura R (2018) Release of encapsulated drug of cross-linked chitosan-poly(N-isopropylacrylamide) as thermo-responsive gel. Kobunshi Ronbunshu. https://doi.org/10.1295/koron.2018-0037

    Article  Google Scholar 

  2. Ueoka H, Shimomura O, Ueda K, Nomura R (2018) Release behavior of a polyanion-crosslinked chitosan-poly(N-isopropylacrylamide) gel thermoresponsive material. J Appl Polym Sci. https://doi.org/10.1002/app.46732

    Article  Google Scholar 

  3. Von Nessen K, Karg M, Hellweg T (2013) Thermoresponsive poly-(N-isopropylmethacrylamide) microgels: tailoring particle size by interfacial tension control. Polymer 54:5499–5510

    Article  Google Scholar 

  4. Martinez MV, Molina M, Barbero CA (2018) Poly(N-isopropylacrylamide) cross-linked gels as intrinsic amphiphilic materials: swelling properties used to build novel interphases. J Phys Chem B 122(38):9038–9048

    Article  CAS  Google Scholar 

  5. Matsuo ES, Tanaka T (1988) Kinetics of discontinuous volume-phase transition of gels. J Chem Phys 89:1695–1703

    Article  CAS  Google Scholar 

  6. Zhang XZ, Zhuo RX (2000) Synthesis of temperature-sensitive poly(N-isopropylacrylamide) hydrogel with improved surface property. J Colloid Interface Sci 223:311–313

    Article  CAS  Google Scholar 

  7. Oh KS, Oh JS, Choi HS, Bae YC (1998) Effect of crosslinking on swelling behaviour of NIPAM gel particle. Macromolecules 31:7328–7335

    Article  CAS  Google Scholar 

  8. Tanaka T, Fillmore DJ (1979) Kinetics of swelling of gels. J Chem Phys 70:1214–1218

    Article  CAS  Google Scholar 

  9. Yoshida R, Uchida K, Kaneko Y, Sakai K, Kikuchi A, Sakurai Y, Okano T (1995) Comb type grafted hydrogels with rapid deswelling response to temperature change. Nature 374:240–242

    Article  CAS  Google Scholar 

  10. Kaneko Y, Sakai K, Kikuchi A, Yoshida R, Sakurai Y, Okano T (1995) Influence of freely mobile grafted chain length on dynamic properties of comb-type grafted poly(N-isopropylacrylamide) hydrogels. Macromolecules 28:7717–7723

    Article  CAS  Google Scholar 

  11. Okay O (2000) Macroporous polymer network. Prog Polym Sci 25:711–779

    Article  CAS  Google Scholar 

  12. Dusek K (1982) In: Haward RN (ed) Developments in polymerization. Applied Science, London, p 143

  13. Kabra BG, Gehrke SH (1991) Synthesis of fast thermosensitive poly(N-isopropylacrylamide) gels. Polym Commun 32:322–323

    CAS  Google Scholar 

  14. Lozinsky VI, Plieva FM, Galaev IY, Mattiasson B (2002) The potential of polymeric cryogels in bioseparation. Bioseparation 10:163–188

    Article  Google Scholar 

  15. Takata S, Suzuki K, Norisuye T, Shibayama M (2002) Dependence of shrinking kinetics of poly(N-isopropylacrylamide) gels on preparation temperature. Polymer 43:3101–3107

    Article  CAS  Google Scholar 

  16. Wu XS, Hoffman AS, Yager PJ (1992) Synthesis and characterization of thermally reversible microporous poly(N-isopropylacrylamide) hydrogels. Polym Sci A Polym Chem 30:2121–2129

    Article  CAS  Google Scholar 

  17. Zhang J, Huang S, Zhuo R (2004) Preparation and characterization of novel temperature sensitive poly(N-isopropylacrylamide-co-acryloyl beta-cyclodextrin) hydrogels with fast shrinking kinetics. Macromol Chem Phys 205:107–113

    Article  CAS  Google Scholar 

  18. Wu J, Lin Y, Sun J (2012) Anisotropic volume change of poly(N-isopropyl acrylamide)-based hydrogels with an aligned dual-network microstructure. J Mater Chem 22:17449–17451

    Article  CAS  Google Scholar 

  19. Dogu Y, Okay O (2005) Swelling–deswelling kinetics of poly(N-isopropylacrylamide) hydrogels formed in PEG solutions. J Appl Polym Sci 99:37–44

    Article  Google Scholar 

  20. Wanka G, Hoffmann H, Ulbricht W (1994) Phase-diagrams and aggregation behavior of poly(oxyethylene)-poly(oxypropylene)-poly(oxyethylene) triblock copolymers in aqueous-solutions. Macromolecules 27(15):4145–4159

    Article  CAS  Google Scholar 

  21. Wan Y, Zhao D (2007) On the controllable soft-templating approach to mesoporous silicates. Chem Rev 107:2821

    Article  CAS  Google Scholar 

  22. Shekhar S, Mukherjee M, Sen AK (2012) Synthesis, characterization and protein separation efficiency of N-isopropylacrylamide-co-N-tertiarybutylacrylamide-co-acrylamide-based hydrogel. Iran Polym J 21(12):895–904

    Article  CAS  Google Scholar 

  23. Shekhar S, Mukherjee M, Sen AK (2014) Synthesis and characterization of thermoresponsive terpolymer for protein separation. Int J Polym Mater Polym Biomater 63:389–397

    Article  CAS  Google Scholar 

  24. Shekhar S, Mukherjee M, Sen AK (2016) Swelling, thermal and mechanical properties of NIPAM-based terpolymeric hydrogel. Polym Bull 73(1):125–145

    Article  CAS  Google Scholar 

  25. Van Dyke JD, Kasperski KL (1993) Thermogravimetric study of polyacrylamide with evolved gas analysis. J Polym Sci, Part A: Polym Chem 31:1807–1823

    Article  Google Scholar 

  26. Coats AW, Redfern JP (1964) Kinetic parameters from thermogravimetric data. Nature 201:68–69

    Article  CAS  Google Scholar 

  27. Budrugeac P (2001) The evaluation of the non-isothermal kinetic parameters of the thermal and thermo-oxidative degradation of polymers and polymeric materials: its use and abuse. Polym Degrad Stab 71:185–187

    Article  CAS  Google Scholar 

  28. Othman MBH, Khan A, Ahmad Z, Zakaria MR, Ullah F, Akil HM (2016) Kinetic investigation and lifetime prediction of Cs–NIPAM–MBA-based thermo-responsive hydrogels. Carbohydr Polym 136:1182–1193

    Article  CAS  Google Scholar 

  29. Georgieva V, Zvezdova D, Vlaev L (2012) Non-isothermal kinetics of thermal degradation of chitin. J Therm Anal Calorim. https://doi.org/10.1007/s10973-012-2359-6

    Article  Google Scholar 

  30. Demirel GB, Caykara T, Demiray M, Guru M (2009) Effect of pore forming agent type on swelling properties of macroporous poly(N-[3-dimethylaminopropyl)]-methacrylamide-co-acrylamide) hydrogels. J Macmol Sci Part A Pure Appl Chem 46:58–64

    Article  CAS  Google Scholar 

  31. Chern JM, Lee WF, Hsieh MY (2004) Preparation and swelling Characterization of poly(N-isopropylacrylamide) based porous hydrogel. J Appl Polym Sci 92:3651–3658

    Article  CAS  Google Scholar 

  32. Berens AR, Hopfenberg HB (1978) Diffusion and relaxation in glassy polymer powders: 2. separation of diffusion and relaxation parameters. Polymer 19:489–496

    Article  CAS  Google Scholar 

  33. Bajpai SK, Singh S (2006) Analysis of swelling behavior of poly (methacrylamide-co-methacrylic acid) hydrogels and effect of synthesis conditions on the water uptake. React Funct Polym 66:431–440

    Article  CAS  Google Scholar 

  34. Rossi G, Mazich KA (1991) Kinetics of swelling for a cross-linked elastomer or gel in the presence of a good solvent. Phys Rev A 44:4793–4796

    Article  Google Scholar 

  35. Ganji F, Vasheghani-Farahani E (2009) Hydrogels in controlled drug delivery systems. Iran Polym J 18(1):63–88

    CAS  Google Scholar 

  36. Ganji F, Vasheghani-Farahani S, Vasheghani-Farahani E (2010) Theoretical description of hydrogel swelling: a review. Iran Polym J 19(5):375–398

    CAS  Google Scholar 

  37. Bajpai SK (2000) Poly(N-vinyl-2-pyrrolidone)-polyacrylamide hydrogels as extraction solvents. Iran Polym J 9(1):19–27

    CAS  Google Scholar 

  38. Kabra BG, Gehrke SH, Hwang ST (1991) Modification of the dynamic swelling behavior of poly(2-hydroxyethyl methacrylate) in water. J Appl Polym Sci 42:2409–2416

    Article  CAS  Google Scholar 

  39. Katime I, Novoa R, Apodaca DE, Mendizábal E, Puig JE (1999) Theophylline release from poly(acrylic acid-co-acrylamide) hydrogels. Polym Test 18:559–566

    Article  CAS  Google Scholar 

  40. Kardag E, Saraydin D (2002) Swelling of superabsorbent acrylamide-sodium acrylate hydrogels prepared using multifunctional crosslinkers. Turk J Chem 26:863–875

    Google Scholar 

  41. Wicks ZW, Jones FN, Pappas SP (eds) (1999) Organic coating science and technology, 2nd edn. Wiley, New York

    Google Scholar 

  42. Lee J, Macosko CW, Urry DWJ (2001) Phase transition and elasticity of protein-based hydrogels. Biomater Sci Polym Ed 12(2):229–242

    Article  Google Scholar 

  43. Zhu D, Lu M, Guo J, Liang L, Lan Y (2012) Effect of adamantyl methacrylate on the thermal and mechanical properties of thermosensitive poly(N-isopropylacrylamide) hydrogels. J Appl Polym Sci 124:155–163

    Article  CAS  Google Scholar 

  44. Bader RA (2008) Synthesis and viscoelastic characterization of novel hydrogels generated via photopolymerization of 1,2-epoxy-5-hexene modified poly(vinyl alcohol) for use in tissue replacement. Acta Biomater 4:967–975

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suman Shekhar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 622 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shekhar, S., Mukherjee, M. & Sen, A.K. Effect of surfactant on the swelling and mechanical behavior of NIPAM-based terpolymer. Polym. Bull. 77, 4355–4379 (2020). https://doi.org/10.1007/s00289-019-02940-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02940-7

Keywords

Navigation