Skip to main content
Log in

Synthesis, characterization and protein separation efficiency of N-isopropylacrylamide-co-N-tertiary butylacrylamide-co-acrylamide-based hydrogels

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

In the present study, hydrogels were prepared by free radical polymerization in water–dioxane mixture with fixed molar ratio (25 mol%) of N-isopropylacrylamide (NIPAM) and varying remaining molar concentrations of N-tert-butylacrylamide (NTBA) and acrylamide (AAm). The structure of the resultant hydrogels was studied by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) techniques. The thermal properties of the hydrogels were analyzed by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) methods. DSC thermograms were used for the quantitative determination of free, interfacial and bound water contents. The result showed that the free and interfacial water contents increased with increase in the hydrophilic AAm content, and the bound water content increased with hydrophobic NTBA content in the hydrogels. Swelling behavior of the hydrogels was evaluated at different temperatures. The percentage swelling and diffusion kinetic parameters (network structure constant, type of diffusion and diffusion constant) were calculated for all samples. The diffusion was found to be Fickian type for copolymer having equimolar concentrations of NTBA and AAm and non-Fickian type for others. Diffusion coefficients of the hydrogels were found to be increased with increasing temperature. In addition, poly(NIPAM-co-NTBA-co-AAm) hydrogels were used in concentration separation process for BSA solution. The result showed that the copolymer with equimolar NTBA and AAm contents has high separation efficiency with good thermoresponsive behavior among all copolymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Scheme 1

Similar content being viewed by others

References

  1. Mu B, Wang T, Wu Z, Shi H, Xue D, Liu P (2011) Fabrication of functional block copolymer grafted supermagnetic nanoparticles for targeted and controlled drug delivery. Coll Surf A 75:163–168

    Article  Google Scholar 

  2. Kumara A, Srivastavaa A, Galaevb IY, Mattiasson B (2007) Smart polymers: physical forms and bioengineering applications. Prog Polym Sci 32:1205–1237

    Article  Google Scholar 

  3. Chunyue P, Quigde L, Dian YU, Yanping R, Nianqian W, Xingcui L (2008) Swelling and drug releasing properties of poly(N-isopropylacrylamide) thermosensitive copolymeric gels. Front Chem China 3:314–319

    Article  Google Scholar 

  4. Ayano E, Kanazawa H (2006) Aqueous chromatography system using temperature-responsive polymer-modified stationary phases. J Sep Sci 29:738–749

    Article  CAS  Google Scholar 

  5. Hirokawa Y, Tanaka T (1984) Volume phase transition in a nonionic gel. J Chem Phys 81:6379–6380

    Article  Google Scholar 

  6. Zuang YF, Chen LW, Zhu ZQ, Yang H (2000) Preparation and separation function of N-isopropylacrylamide copolymer hydrogels. Poly Adv Technol 11:192–197

    Article  Google Scholar 

  7. Han J, Park CH, Ruan R (1995) Concentrating alkaline serine protease, subtilisin using a temperature sensitive hydrogel. Biotechnol Lett 17:851–852

    Article  CAS  Google Scholar 

  8. Park CH, Avila IO (1992) Concentrating cellulose from fermented broth using a temperature sensitive hydrogel. Biotechnol Prog 8:521–526

    Article  CAS  Google Scholar 

  9. Kayaman N, Kazan D, Erarslan A, Okay O, Baysal BM (1998) Structure and protein separation efficiency of poly(N-isopropylacrylamide) gels: effect of synthesis conditions. J Appl Polym Sci 67:805–814

    Article  CAS  Google Scholar 

  10. Zhuang Y, Wang G, Yang H, Zhu Z, Fu J, Song W, Zhao H (2005) Radiation polymerization and concentration separation of P(NIPA-co-AMPS) hydrogels. Polym Int 54:617–621

    Article  CAS  Google Scholar 

  11. Yildiz B, Isik B, Ki M (2002) Synthesis and characterization of thermoresponsive isopropylacrylamide–acrylamide hydrogels. Eur Polym J 48:1343–1347

    Article  Google Scholar 

  12. Demirel G, Özçetin G, Turan E, ÇayKara T (2005) pH/Temperature-sensitive imprinted ionic poly(N-tert-butylacrylamide-co-acrylamide/maleic acid) hydrogels for bovine serum albumin. Macromol Biosci 5:1032–1037

    Article  CAS  Google Scholar 

  13. Rochev YU, O’Halloran D, Gorelova T, Gilcreest V, Selenzneva I, Gavrilyuk B, Gorelov A (2004) Rationalising the design of polymeric thermoresponsive biomaterials. J Mater Sci Mater Med 15:513–517

    Article  CAS  Google Scholar 

  14. Ni C, Zhu XX (2004) Synthesis and swelling behavior of thermosensitive hydrogels based on N-substituted acrylamides and sodium acrylate. Eur Polym J 40:1075–1080

    Article  CAS  Google Scholar 

  15. Save NS, Jassal M, Agrawal AK (2003) Stimuli sensitive copolymer poly(N-tert-butylacrylamide–ran-acrylamide): processing into thin films and their translational behavior. Polymer 44:7979–7988

    Article  CAS  Google Scholar 

  16. Ozturk V, Okay O (2002) Temperature sensitive poly(N-t-butylacrylamide-co-acrylamide) hydrogels: synthesis and swelling behavior. Polymer 43:5017–5026

    Article  CAS  Google Scholar 

  17. Thomas W (1964) Acrylamide polymers In: Bikales NM (ed) Encyclopedia of polymer science and technology, vol 1, Wiley Int Sci, NY, p 177–179

  18. Van Dyke JD, Kasperski KL (1993) Thermogravimetric study of polyacrylamide with evolved gas analysis. J Polym Sci Part A Polym Chem 31:1807–1823

    Article  Google Scholar 

  19. Katime I, Díaz de Apodaca E, Mendizábal E, Puig JE (2000) Acrylic acid/methyl methacrylate hydrogels. I. Effect of composition on mechanical and thermodynamic properties. J Mac Sci Part A 37:307–321

    Google Scholar 

  20. Huglin MB, Rehab MM, Zakaria MB (1986) Thermodynamic interaction in copolymeric hydrogels. Macromolecules 19:2986–2991

    Article  CAS  Google Scholar 

  21. Li W, Xue F, Cheng R (2005) States of water in partially swollen poly(vinyl alcohol) hydrogels. Polymer 46:12026–12031

    Article  CAS  Google Scholar 

  22. Davis TP, Huglin MB, Yip DCF (1988) Properties of poly(N-vinyl-2-pyrrolidone) hydrogels crosslinked with ethyleneglycol dimethacrylate. Polymer 29:701–706

    Article  CAS  Google Scholar 

  23. Abraham AA, Sen AK (2010) Thermal and swelling studies of hydrophobically modified poly(acrylamide) hydrogels. J Appl Polym Sci 117:2795–2802

    CAS  Google Scholar 

  24. Kim SJ, Park SJ, Kim SI (2003) Synthesis and characteristics of interpenetrating polymer network hydrogels composed of poly(vinyl alcohol) and poly(N-isopropylacrylamide). React Funct Polym 55:61–67

    Article  CAS  Google Scholar 

  25. Isreachvilli JN (1992) Special interaction: hydrogen-bonding, hydrophobic and hydrophilic interaction. In: Intermolecular and surface forces, Academic Press, NY, p 151–167

  26. Tanford C (1980) The structure of water. In: The hydrophobic effect: formation of micelles and biological membranes, 2nd edn. Wiley, USA, p 29–41

  27. Berens AR, Hopfenberg HB (1978) Diffusion and relaxation in glassy polymer powders: 2. Separation of diffusion and relaxation parameters. Polymer 19:489–496

    Article  CAS  Google Scholar 

  28. Buckley JD, Berger MJ (1962) The swelling of polymer system in solvents. II. Mathematics of diffusion. J Polym Sci 56:175–188

    Article  CAS  Google Scholar 

  29. Peppas NA, Franson NM (1983) The swelling interface number as a criterion for prediction of diffusional solute release mechanisms in swellable polymers. J Polym Sci Phys Ed 21:983–997

    Article  CAS  Google Scholar 

  30. Bajpai SK, Singh S (2006) Analysis of swelling behavior of poly(methacrylamide-co-methacrylic acid) hydrogels and effect of synthesis conditions on the water uptake. React Funct Polym 66:431–440

    Article  CAS  Google Scholar 

  31. Bajpai SK (2000) Poly(N-vinyl-2-pyrrolidone)-polyacrylamide hydrogels as extraction solvents. Iran Polym J 9:19–27

    CAS  Google Scholar 

  32. Kabra BG, Gehrke SH, Hwang ST, Ritschel WA (1991) Modification of the dynamic swelling behavior of poly(2-hydroxyethyl methacrylate) in water. J Appl Polym Sci 42:2409–2416

    Article  CAS  Google Scholar 

  33. Katime I, Novoa R, Díaz de Apodaca E, Mendizábal E, Puig JE (1999) Theophylline release from poly(acrylic acid-co-acrylamide) hydrogels. Polym Test 18:559–566

    Article  CAS  Google Scholar 

  34. Kardag E, Saraydin D (2002) Swelling of superabsorbent acrylamide–sodium acrylate hydrogels prepared using multifunctional crosslinkers. Turk J Chem 26:863–875

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Central Instrumentation Facility (CIF) at Birla Institute of Technology, Mesra, established in 2006, and the Technical Education Quality Improvement Programme (TEQIP) funded by World Bank for the State of the Art Instrumentation Facility. The authors also acknowledge the financial support from the Central Coir Research Institute (CCRI), Ministry of Micro, Small and Medium Enterprises (MSME) (Government of India), Alappuzha, Kerala, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhil Kumar Sen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shekhar, S., Mukherjee, M. & Sen, A.K. Synthesis, characterization and protein separation efficiency of N-isopropylacrylamide-co-N-tertiary butylacrylamide-co-acrylamide-based hydrogels. Iran Polym J 21, 895–905 (2012). https://doi.org/10.1007/s13726-012-0094-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-012-0094-2

Keywords

Navigation