Skip to main content
Log in

Mechanical properties and creep behavior of fluoroelastomer under hydrochloric acid environments

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Fluoroelastomers are commonly used as seal, gasket or membrane materials in many industrial applications. The temperature- and environment-dependent material property of rubbers will result in degradation and creep. In this study, the effects of both temperature and concentration of hydrochloric acid solution on mechanical properties and creep behavior of fluoroelastomer are investigated. The tensile test results demonstrate that the mechanical properties of rubber after acid treatment show a continual decrease as temperature or concentration increased. This degradation is attributed to the combination of both the swelling of rubber for the matrix which is penetrated by a number of acid solution molecules and the damage of chain networks where the acid–rubber reactions are generated inside. The tensile creep of the acid-treated rubbers is examined under controlled acidic environmental conditions. The creep rate and creep strain are both increased with increasing temperature or concentration. The creep curves are correctly fitted at long times by standard four-element model to evaluate the contributions from separate creep components. From fitting results, the change of viscoelastic strain component and viscous strain component suggests there are structural rearrangements within rubber chains and deformation of rubber matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Améduri B, Boutevin B, Kostov G (2001) Fluoroelastomers: synthesis, properties and applications. Prog Polym Sci 26:105–187

    Article  Google Scholar 

  2. Imae T (2003) Fluorinated polymers. Curr Opin Colloid Interface Sci 8:307–314

    Article  CAS  Google Scholar 

  3. Johns K, Stead G (2000) Fluoroproducts — the extremophiles. J Fluorine Chem 104:5–18

    Article  CAS  Google Scholar 

  4. Akhlaghi S, Gedde UW, Hedenqvist MS, Braña MTC, Bellander M (2015) Deterioration of automotive rubbers in liquid biofuels: a review. Renew Sustain Energy Rev 43:1238–1248

    Article  CAS  Google Scholar 

  5. Peighambardoust SJ, Rowshanzamir S, Amjadi M (2010) Review of the proton exchange membranes for fuel cell applications. Int J Hydrogen Energy 35:9349–9384

    Article  CAS  Google Scholar 

  6. Xia L, Wang M, Wu H, Guo S (2016) Effects of cure system and filler on chemical aging behavior of fluoroelastomer in simulated proton exchange membrane fuel cell environment. Int J Hydrogen Energy 41:2887–2895

    Article  CAS  Google Scholar 

  7. Cepeda-Jiménez CM, Mercedes Pastor-Blas M, Ferrándiz-Gómez TP, Martı́n-Martı́nez JM (2001) Influence of the styrene content of thermoplastic styrene–butadiene rubbers in the effectiveness of the treatment with sulfuric acid. Int J Adhes Adhes 21:161–172

    Article  Google Scholar 

  8. Li Q, Jensen JO, Savinell RF, Bjerrum NJ (2009) High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Prog Polym Sci 34:449–477

    Article  CAS  Google Scholar 

  9. Muñoz-Sánchez B, Arévalo-Caballero MJ, Pacheco-Menor MC (2017) Influence of acetic acid and calcium hydroxide treatments of rubber waste on the properties of rubberized mortars. Mater Struct 50:75

    Article  Google Scholar 

  10. Majsztrik PW, Bocarsly AB, Benziger JB (2008) Viscoelastic response of nafion. effects of temperature and hydration on tensile creep. Macromolecules 41:9849–9862

    Article  CAS  Google Scholar 

  11. Farfán-Cabrera LI, Pascual-Francisco JB, Gallardo-Hernández EA, Susarrey-Huerta O (2018) Application of digital image correlation technique to evaluate creep degradation of sealing elastomers due to exposure to fluids. Polym Testing 65:134–141

    Article  Google Scholar 

  12. Kader MA, Bhowmick AK (2003) Thermal ageing, degradation and swelling of acrylate rubber, fluororubber and their blends containing polyfunctional acrylates. Polym Degrad Stab 79:283–295

    Article  CAS  Google Scholar 

  13. Yamane S, Shinzawa H, Ata S, Suzuki Y, Nishizawa A, Mizukado J (2018) A thermal oxidative degradation study of triallyl isocyanurate crosslinking moiety in fluorinated rubber by two-dimensional infrared correlation spectroscopy. Vib Spectrosc 98:30–34

    Article  CAS  Google Scholar 

  14. Mitra S, Ghanbari-Siahkali A, Kingshott P, Almdal K, Kem Rehmeier H, Christensen AG (2004) Chemical degradation of fluoroelastomer in an alkaline environment. Polym Degrad Stab 83:195–206

    Article  CAS  Google Scholar 

  15. Mitra S, Ghanbari-Siahkali A, Kingshott P, Hvilsted S, Almdal K (2004) Chemical degradation of an uncrosslinked pure fluororubber in an alkaline environment. J Polym Sci, Part A: Polym Chem 42:6216–6229

    Article  CAS  Google Scholar 

  16. Li D, Liao M (2017) Dehydrofluorination mechanism, structure and thermal stability of pure fluoroelastomer (poly(VDF-ter-HFP-ter-TFE) terpolymer) in alkaline environment. J Fluorine Chem 201:55–67

    Article  CAS  Google Scholar 

  17. Li D, Liao M (2018) Study on the dehydrofluorination of vinylidene fluoride (VDF) and hexafluoropropylene (HFP) copolymer. Polym Degrad Stab 152:116–125

    Article  CAS  Google Scholar 

  18. Houshyar S, Shanks RA, Hodzic A (2005) Tensile creep behaviour of polypropylene fibre reinforced polypropylene composites. Polym Test 24:257–264

    Article  CAS  Google Scholar 

  19. Kolařík J, Pegoretti A (2006) Non-linear tensile creep of polypropylene: time-strain superposition and creep prediction. Polymer 47:346–356

    Article  Google Scholar 

  20. Kolařík J, Pegoretti A, Fambri L, Penati A (2003) Non-linear long-term tensile creep of poly(propylene)/cycloolefin copolymer blends with fibrous structure. Macromol Mater Eng 288:629–641

    Article  Google Scholar 

  21. Derham C (1973) Creep and stress relaxation of rubbers—the effects of stress history and temperature changes. J Mater Sci 8:1023–1029

    Article  CAS  Google Scholar 

  22. Khaled MA, Hassan EA, Elwy A, Metwally EE (1994) Effect of carbon black on the electrical and creep characteristics of EPDM rubber. Mater Lett 19:325–328

    Article  CAS  Google Scholar 

  23. Plazek DJ (1966) Effect of crosslink density on the creep behavior of natural rubber vulcanizates. J Polym Sci Part A-2 Polym Phys Banner 4:745–763

    Article  CAS  Google Scholar 

  24. Mostafa A, Abouel-Kasem A, Bayoumi MR, El-Sebaie MG (2009) On the influence of CB loading on the creep and relaxation behavior of SBR and NBR rubber vulcanizates. Mater Des 30:2721–2725

    Article  CAS  Google Scholar 

  25. El-Tantawy F (2005) The interrelation among network structures, molecular transport of solvent, and creep behaviors of TiB2 ceramic containing butyl rubber composites. J Appl Polym Sci 98:2226–2235

    Article  CAS  Google Scholar 

  26. Kramer O, Greco R, Neira RA, Ferry JD (1974) Rubber networks containing unattached macromolecules. I. Linear viscoelastic properties of the system butyl rubber–polyisobutylene. J Polym Sci Polym Phys Ed Banner 12:2361–2374

    Article  CAS  Google Scholar 

  27. Cui T, Chao YJ, Van Zee JW (2013) Thermal stress development of liquid silicone rubber seal under temperature cycling. Polym Test 32:1202–1208

    Article  CAS  Google Scholar 

  28. Wang L, Ma F, Shi Q, Liu H, Wang X (2011) Study on compressive resistance creep and recovery of flexible pressure sensitive material based on carbon black filled silicone rubber composite. Sens Actuators A Phys 165:207–215

    Article  CAS  Google Scholar 

  29. Plazek DJ, Choy I-C, Kelley FN, Meerwali Ev S-J (1983) Viscoelasticity and tearing energy of fluorinated hydrocarbon elastomers. Rubber Chem Technol 56:866–882

    Article  CAS  Google Scholar 

  30. Genovese A, Shanks RA (2007) Time-temperature creep behaviour of poly(propylene) and polar ethylene copolymer blends. Macromol Mater Eng 292:184–196

    Article  CAS  Google Scholar 

  31. Osanaiye GJ, Adewale KP (2001) Creep and recovery of EPDM elastomer using a modified sandwich rheometer. Polym Test 20:363–370

    Article  CAS  Google Scholar 

  32. Gent AN (1962) Relaxation processes in vulcanized rubber. I. Relation among stress relaxation, creep, recovery, and hysteresis. J Appl Polym Sci 6:433–441

    Article  CAS  Google Scholar 

  33. Lai JSY, Findley WN (1968) Prediction of uniaxial stress relaxation from creep of nonlinear viscoelastic material. Trans Soc Rheol 12:243–257

    Article  Google Scholar 

  34. Touati D, Cederbaum G (1997) On the prediction of stress relaxation from known creep of nonlinear materials. J Eng Mater Technol 119:121–124

    Article  CAS  Google Scholar 

  35. Touati D, Cederbaum G (1997) Stress relaxation of nonlinear thermoviscoelastic materials predicted from known creep. Mech Time-Dependent Mater 1:321–330

    Article  Google Scholar 

  36. Oman S, Nagode M (2014) Observation of the relation between uniaxial creep and stress relaxation of filled rubber. Mater Des 60:451–457

    Article  Google Scholar 

  37. Soares BG, Oliveira Md, Zaioncz S (2010) Nitrile rubber - based nanocomposites prepared by melt mixing: effect of the mixing parameters on mechanical, dynamic-mechanical and creep behavior. Polímeros 20:371–376

    Article  CAS  Google Scholar 

  38. Kaneko S, Tanaka T, Abe S, Ishikawa T (2004) A study on squeeze films between porous rubber surface and rigid surface: analysis based on the viscoelastic continuum model. J Tribol 126:719–727

    Article  CAS  Google Scholar 

  39. Mustafa M, Chhanda NJ, Mahbubur Razzaque M (2010) A numerical model of an oscillating squeeze film between a rubber surface and a rigid surface. Tribol Int 43:202–209

    Article  CAS  Google Scholar 

  40. Abu-Abdeen M (2010) Single and double-step stress relaxation and constitutive modeling of viscoelastic behavior of swelled and un-swelled natural rubber loaded with carbon black. Mater Des 31:2078–2084

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51573098), the Innovative Group of Liaoning Education Department of China (LT2016013) and the Program for Young and Middle-aged Scientific and Technological Innovative Talents of Shenyang, China (No. RC180154).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinghong Fang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, W., Du, H., Li, S. et al. Mechanical properties and creep behavior of fluoroelastomer under hydrochloric acid environments. Polym. Bull. 77, 5967–5983 (2020). https://doi.org/10.1007/s00289-019-03061-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-03061-x

Keywords

Navigation