Skip to main content
Log in

o-Phenylenediamine-derived phosphorus-based cyclic flame retardant for epoxy and polyurethane systems

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The present study attempts the synthesis of a cyclic multifunctional flame-retardant (FR) moiety from o-phenylenediamine (OPDA) as the starting material. OPDA was reacted with phenylphosphonic dichloride and further with the 3-monochloro-1,2-propanediol to obtain the final product (FRPOL) which was then incorporated into epoxy and polyurethane coating systems. The structure of the synthesized molecule was confirmed using hydroxyl value, Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy. The cured coating films were characterized for thermal, mechanical and flame-retardant properties. Thermogravimetric analysis and differential scanning calorimetry were used to carry out the thermal degradation studies and to know the glass transition temperatures (Tg), respectively. The thermal and mechanical properties were excellent after the incorporation of the synthesized molecule into the coating systems. The limiting oxygen index (LOI) and UL-94 vertical burning tests were carried out to check the flame retardancy of the cured coating films. The polyurethane with FR had the maximum LOI value of 32 while the epoxy with 45% concentration of FR had a maximum LOI value of 26 among all the coating formulations. The formulations with FRPOL displayed self-extinguishing behavior with no dripping in UL-94 test.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Vasilev K, Cavallaro A, Zilm P (2018) Special issue: antibacterial materials and coatings. Molecules 23:585. https://doi.org/10.3390/molecules23030585

    Article  CAS  PubMed Central  Google Scholar 

  2. Weil ED (2011) Fire sciences fire-protective and flame-retardant coatings—a state-of-the-art review. J Fire Sci. https://doi.org/10.1177/0734904110395469

    Article  Google Scholar 

  3. Weil ED, Levchik S (2004) A review of current flame retardant systems for epoxy resins. J Fire Sci 22:25–40. https://doi.org/10.1177/0734904104038107

    Article  CAS  Google Scholar 

  4. Pradhan S, Pandey P, Mohanty S, Nayak SK (2016) Insight on the chemistry of epoxy and its curing for coating applications: a detailed investigation and future perspectives. Polym Plast Technol Eng 55:862–877. https://doi.org/10.1080/03602559.2015.1103269

    Article  CAS  Google Scholar 

  5. Akindoyo JO, Beg MDH, Ghazali S et al (2016) Polyurethane types, synthesis and applications-a review. RSC Adv 6:114453–114482. https://doi.org/10.1039/c6ra14525f

    Article  CAS  Google Scholar 

  6. Noreen A, Zia KM, Zuber M et al (2016) Bio-based polyurethane: an efficient and environment friendly coating systems: a review. Prog Org Coat 91:25–32. https://doi.org/10.1016/j.porgcoat.2015.11.018

    Article  CAS  Google Scholar 

  7. Nagy Á, Kuti R (2016) The environmental impact of plastic waste incineration. Aarms 15:231–237

    Google Scholar 

  8. Pavani P, Rajeswari TR (2014) Impact of heavy metals on environmental pollution. J Chem Pharm Sci 94:87–93

    Google Scholar 

  9. Sjostedt SJ, Abbatt JPD (2008) Release of gas-phase halogens from sodium halide substrates: heterogeneous oxidation of frozen solutions and desiccated salts by hydroxyl radicals. Environ Res Lett. https://doi.org/10.1088/1748-9326/3/4/045007

    Article  Google Scholar 

  10. Jian R, Wang P, Xia L, Zheng X (2017) Effect of a novel P/N/S-containing reactive flame retardant on curing behavior, thermal and flame-retardant properties of epoxy resin. J Anal Appl Pyrolysis 127:360–368. https://doi.org/10.1016/j.jaap.2017.07.014

    Article  CAS  Google Scholar 

  11. Deh S, Gähr F, Buchmeiser MR (2016) Synergistic effects in the pyrolysis of phosphorus-based flame-retardants: the role of Si- and N-based compounds. Polym Degrad Stab 130:155–164. https://doi.org/10.1016/j.polymdegradstab.2016.06.009

    Article  CAS  Google Scholar 

  12. Schartel B (2010) Phosphorus-based flame retardancy mechanisms-old hat or a starting point for future development? Materials 3(10):4710–4745. https://doi.org/10.3390/ma3104710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhao X, Babu HV, Llorca J, Wang DY (2016) Impact of halogen-free flame retardant with varied phosphorus chemical surrounding on the properties of diglycidyl ether of bisphenol-A type epoxy resin: synthesis, fire behaviour, flame-retardant mechanism and mechanical properties. RSC Adv 6:59226–59236. https://doi.org/10.1039/c6ra13168a

    Article  CAS  Google Scholar 

  14. Zhang Y, He J, Yang R (2016) The effects of phosphorus-based flame retardants and octaphenyl polyhedral oligomeric silsesquioxane on the ablative and flame-retardation properties of room temperature vulcanized silicone rubber insulating composites. Polym Degrad Stab 125:140–147. https://doi.org/10.1016/j.polymdegradstab.2015.12.007

    Article  CAS  Google Scholar 

  15. Wang W, Wang X, Pan Y et al (2017) Synthesis of phosphorylated graphene oxide based multilayer coating: self-assembly method and application for improving the fire safety of cotton fabrics. Ind Eng Chem Res 56:6664–6670. https://doi.org/10.1021/acs.iecr.7b01293

    Article  CAS  Google Scholar 

  16. Çakmakçı E (2017) Allylamino diphenylphosphine oxide and poss containing flame retardant photocured hybrid coatings. Prog Org Coat 105:37–47. https://doi.org/10.1016/j.porgcoat.2016.11.013

    Article  CAS  Google Scholar 

  17. Mestry S, Kakatkar R, Mhaske ST (2019) Cardanol derived P and Si based precursors to develop flame retardant PU coating. Prog Org Coat 129:59–68

    Article  CAS  Google Scholar 

  18. Mans V, Lugato L, Garcia D (2016) Ammonium polyphosphates and intumescent coatings in structural steel fire protection. PPCJ Polym Paint Colour J 206:23–27

    Google Scholar 

  19. Jimenez M, Duquesne S, Bourbigot S (2006) Characterization of the performance of an intumescent fire protective coating. Surf Coat Technol 201:979–987. https://doi.org/10.1016/j.surfcoat.2006.01.026

    Article  CAS  Google Scholar 

  20. Mestry S, Mhaske ST (2019) Synthesis of epoxy resins using phosphorus-based precursors for flame-retardant coating. J Coat Technol Res. https://doi.org/10.1007/s11998-018-00157-3

    Article  Google Scholar 

  21. Park H-S, Kwon S-Y, Seo K-J et al (1999) Preparation and physical properties of polyurethane flame retardant coatings using phosphorus-containing lactone modified polyesters. J Coat Technol 71:59–65. https://doi.org/10.1007/BF02697979

    Article  CAS  Google Scholar 

  22. Liu C, Li T, Zhang J et al (2016) Preparation and properties of phosphorous-nitrogen containing UV-curable polymeric coatings based on thiol-ene click reaction. Prog Org Coat 90:21–27. https://doi.org/10.1016/j.porgcoat.2015.09.004

    Article  CAS  Google Scholar 

  23. Mestry SU, Patil DM, Mhaske ST (2018) Effect of 2-aminobenzothiazole on antimicrobial activity of waterborne polyurethane dispersions (WPUDs). Polym Bull. https://doi.org/10.1007/s00289-018-2469-9

    Article  Google Scholar 

  24. Sonnier R, Dumazert L, Livi S et al (2016) Flame retardancy of phosphorus-containing ionic liquid based epoxy networks. Polym Degrad Stab 134:186–193. https://doi.org/10.1016/j.polymdegradstab.2016.10.009

    Article  CAS  Google Scholar 

  25. Jeng RJ, Shau SM, Lin JJ et al (2002) Flame retardant epoxy polymers based on all phosphorus-containing components. Eur Polym J 38:683–693. https://doi.org/10.1016/S0014-3057(01)00246-4

    Article  CAS  Google Scholar 

  26. Wang S, Xu C, Liu Y et al (2017) Vanillin-derived high-performance flame retardant epoxy resins: facile synthesis and properties. Macromolecules 50(5):1892–1901. https://doi.org/10.1021/acs.macromol.7b00097

    Article  CAS  Google Scholar 

  27. Chen X, Jiao C (2008) Thermal degradation characteristics of a novel flame retardant coating using TG-IR technique. Polym Degrad Stab 93:2222–2225. https://doi.org/10.1016/j.polymdegradstab.2008.09.005

    Article  CAS  Google Scholar 

  28. Qian LJ, Ye LJ, Xu GZ et al (2011) The non-halogen flame retardant epoxy resin based on a novel compound with phosphaphenanthrene and cyclotriphosphazene double functional groups. Polym Degrad Stab 96:1118–1124. https://doi.org/10.1016/j.polymdegradstab.2011.03.001

    Article  CAS  Google Scholar 

  29. Wu CS, Liu YL, Chiu YS (2002) Epoxy resins possessing flame retardant elements from silicon incorporated epoxy compounds cured with phosphorus or nitrogen containing curing agents. Polymer (Guildf) 43:4277–4284. https://doi.org/10.1016/S0032-3861(02)00234-3

    Article  CAS  Google Scholar 

  30. Yang S, Hu Y, Zhang Q (2019) Synthesis of a phosphorus–nitrogen-containing flame retardant and its application in epoxy resin. High Perform Polym 31:186–196. https://doi.org/10.1177/0954008318756496

    Article  CAS  Google Scholar 

  31. Elwan I, Jabra R (2017) Preparation and evaluation of mechanical and physical properties of random silica fiber/modified resole resin composites. J Mater Environ Sci 8:1220–1234

    CAS  Google Scholar 

  32. Changkun L, Hongliang Z (2017) Patent number WO2017193463A1

  33. Choudhury A (2018) Advances in halogen-free flame retardants. Trends Text Fash Design 1(4):70–74. https://doi.org/10.32474/LTTFD.2018.01.000117

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shashank T. Mhaske.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 516 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, S., Mestry, S., Naik, D. et al. o-Phenylenediamine-derived phosphorus-based cyclic flame retardant for epoxy and polyurethane systems. Polym. Bull. 77, 3185–3205 (2020). https://doi.org/10.1007/s00289-019-02910-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02910-z

Keywords

Navigation