Skip to main content

Advertisement

Log in

Thermal, optical and electrical properties of UV-curing screen-printed glass substrates

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this study, the hydroxyl functionality of the polyaniline surface was obtained using hydroxyethyl methacrylate and acrylated with isocyanatoethyl methacrylate. Coating formulation being curable with UV was designed by mixture of acrylated PANI (a-PANI) (0–5 wt%), polyethylene glycol diacrylate, trimethylolpropane triacrylate, hydrolyzed 3-(methacryloxy) propyl trimethoxysilane (hydMEMO) and photoinitiator. The hybrid composite formulation has been printed on the glass surface with the method of screen printing. The chemical structure and the properties of thermal, electrical and surface obtained products were determined with ATR-FTIR, goniometer, current–voltage meter, scanning electron microscopy (SEM) and thermogravimetric analysis. ATR-FTIR results have shown that all materials were clearly produced. SEM results have revealed that PANI was dispersed at the composite in a stable manner. The conductivity value of the conductive line printed with F5a-PANI was found to be 3.7 × 10−3 S. The best electrical results have presented that PANI has been beneficial for conductive line, and thus, screen printing was a convenient method for printing conductive lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657

    Article  CAS  Google Scholar 

  2. Berggren M, Nilsson D, Robinson ND (2007) Organic materials for printed electronics. Nat Mater 6:3–5

    Article  CAS  PubMed  Google Scholar 

  3. Yan H, Chen Z, Zheng Y, Newman C, Quinn JR, Dötz F, Kastler M, Facchetti A (2009) A high-mobility electron-transporting polymer for printed transistors. Nature 457:679–686

    Article  CAS  PubMed  Google Scholar 

  4. Krebs FC (2009) Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Sol Energ Mater Sol C 93:394–412

    Article  CAS  Google Scholar 

  5. Pardo DA, Jabbour GE, Peyghambarian N (2000) Application of screen printing in the fabrication of organic light-emitting devices. Adv Mater 12:1249–1252

    Article  CAS  Google Scholar 

  6. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon J-M (2012) Li–O2 and Li–S batteries with high energy storage. Nat Mater 11:19–29

    Article  CAS  Google Scholar 

  7. Kaempgen M, Chan CK, Ma J, Cui Y, Gruner G (2009) Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett 9:1872–1876

    Article  CAS  PubMed  Google Scholar 

  8. Gogotsi Y, Simon P (2011) True performance metrics in electrochemical energy storage. Science 334:917–918

    Article  CAS  PubMed  Google Scholar 

  9. Krebs FC, Jørgensen M, Norrman K, Hagemann O, Alstrup J, Nielsen TD, Fyenbo J, Larsen K, Kristensen J (2009) A complete process for production of flexible large area polymer solar cells entirely using screen printing-first public demonstration. Sol Energ Mater Sol C 93:422–441

    Article  CAS  Google Scholar 

  10. Farag AAM, Ashery A, Rafea MA (2010) Optical dispersion and electronic transition characterizations of spin coated polyaniline thin films. Synth Met 160:156–161

    Article  CAS  Google Scholar 

  11. Qiao Y, MingLi C, Bao S-J, Bao Q-L (2007) Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. J Power Sour 170:79–84

    Article  CAS  Google Scholar 

  12. Daikh S, Zeggai FZ, Bellil A, Benyoucef A (2018) Chemical polymerization, characterization and electrochemical studies of PANI/ZnO doped with hydrochloric acid and/or zinc chloride: differences between the synthesized nanocomposites. J Phys Chem Solids 121:78–84

    Article  CAS  Google Scholar 

  13. Benykhlef S, Bekhoukh A, Berenguer R, Benyoucef A, Morallon E (2016) PANI-derived polymer/Al2O3 nanocomposites: synthesis, characterization, and electrochemical studies. Colloid Polym Sci 294:1877–1885

    Article  CAS  Google Scholar 

  14. Yamani K, Berenguer R, Benyoucef A, Morallon A (2018) Preparation of polypyrrole (PPy)-derived polymer/ZrO2 nanocomposites. J Therm Anal Calorim. https://doi.org/10.1007/s10973-018-7347-z

    Article  Google Scholar 

  15. Wang YY, Jing XL (2005) Intrinsically conducting polymers for electromagnetic interference shielding. Polym Adv Technol 16:344–351

    Article  CAS  Google Scholar 

  16. Lanzi M, Paganin L, Errani F (2012) Synthesis, characterization and photovoltaic properties of a new thiophene-based double-cable polymer with pendent fullerene group. Polymer 53:2134–2145

    Article  CAS  Google Scholar 

  17. Kumar P, Joseph A, Ramamurthy PC, Subramanian S (2012) Lead ion sensor with electrodes modified by imidazole-functionalized polyaniline. Microchim Acta 177:317–323

    Article  CAS  Google Scholar 

  18. Kızılyara N, Akbulut U, Toppare L, Özden MY, Yağcı Y (1999) Immobilization of invertase in conducting polypyrrole polytetrahydrofuran graft polymer matrices. Synth Met 104:45–50

    Article  Google Scholar 

  19. Pellegrino J (2003) The use of conducting polymers in membrane-based separations—a review and recent developments. Adv Membr Technol 984:289–305

    CAS  Google Scholar 

  20. Plesu N, Ilia G, Pascariu A, Vlase G (2006) Preparation, degradation of polyaniline doped with organic phosphorus acids and corrosion essays of poly aniline-acrylic blends. Synth Met 156:230–238

    Article  CAS  Google Scholar 

  21. Tang Q, Lin J, Wu J, Zhang C, Hao S (2007) Two-steps synthesis of a poly(acrylate-aniline) conducting hydrogel with an interpenetrated networks structure. Carbohydr Polym 67:332–336

    Article  CAS  Google Scholar 

  22. Sankır ND, Mecham JB, Goff RM, Harrison WL, Claus RO (2006) Novel ductile polyaniline/sulfonated poly (arylene ether sulfone) composites. Smart Mater Struct 15:200–203

    Article  CAS  Google Scholar 

  23. Zheng X, Liu J, Wang K, Liu R, Yuan Y, Liu X (2018) Preparation of polyimide/amino-modified reduced graphene oxide composite matrix and its application in UV-cured functionalized films. Prog Org Coat 124:122–128

    Article  CAS  Google Scholar 

  24. Lalevée J, Fouassier J-P (2015) Dyes and chromophores in polymer science. Wiley, London

    Book  Google Scholar 

  25. Nakamura K (2014) Photopolymers: photoresist materials, processes, and applications. CRC Press, Boca Raton

    Book  Google Scholar 

  26. Polykarpov A, Tiwari A (2015) Photocured materials: a general perspective. R Soc Chem 1:1–14

    Google Scholar 

  27. Chen M, Zhong MJ, Johnson JA (2016) Light-controlled radical polymerization: mechanisms, methods, and applications. Chem Rev 116:10167–10211

    Article  CAS  PubMed  Google Scholar 

  28. Blinova NV, Svec F (2012) Functionalized polyaniline-based composite membranes with vastly improved performance for separation of carbon dioxide from methane. J Membr Sci 423:514–521

    Article  CAS  Google Scholar 

  29. Cakmakcı E, Madakbas S (2013) Preparation and characterization of polyaniline/hexagonal boron nitride composites. High Temp Mater Proces 32:557–561

    Article  Google Scholar 

  30. Hu W, Chen S, Yang Z, Liu L, Wang H (2011) Flexible electrically conductive nanocomposite membrane based on bacterial cellulose and polyaniline. J Phys Chem B 115:8453–8457

    Article  CAS  PubMed  Google Scholar 

  31. Beyler-Cigil A, Kahraman MV (2016) Effect of surface modification on nano-diamond particles for surface and thermal property of UV-curable hybrid coating. Prog Org Coat 101:468–476

    Article  CAS  Google Scholar 

  32. Cigil AB, Cankurtaran H, Kahraman MV (2017) Photo-crosslinked thiol-ene based hybrid polymeric sensor for humidity detection. React Funct Polym 114:75–85

    Article  CAS  Google Scholar 

  33. Kumar MNS (2009) Thermogravimetric analysis and morphological behavior of melamine-formaldehyde filled polyvinyl acetate-polyester nonwoven fabric composites. J Appl Polym Sci 111:1165–1171

    Article  CAS  Google Scholar 

  34. MacDiarmid AG (2001) Nobel lecture: “Synthetic metals”: a novel role for organic polymers. Rev Mod Phys 73:701–712

    Article  CAS  Google Scholar 

  35. Wessling B (1998) Dispersion as the link between basic research and commercial applications of conductive polymers (polyaniline). Synth Met 93:143–154

    Article  CAS  Google Scholar 

  36. Wang WN, Schiff E, Wang Q (2008) Amorphous silicon/polyaniline heterojunction solar cells: fermi levels and open-circuit voltages. J Non-Cryst Solids 354:2862–2865

    Article  CAS  Google Scholar 

  37. Aydemir C, Yenidoğan S, Karademir A, Arman E (2017) Effects of color mixing components on offset ink and printing process. Mater Manuf Process 32:1310–1315

    Article  CAS  Google Scholar 

  38. Fan Z, Wang Z, Duan M, Wang J, Wang S (2008) Preparation and characterization of polyaniline/polysulfone nanocomposite ultrafiltration membrane. J Membr Sci 310:402–408

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Memet Vezir Kahraman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çiğil, A.B., Kandırmaz, E.A., Birtane, H. et al. Thermal, optical and electrical properties of UV-curing screen-printed glass substrates. Polym. Bull. 76, 4355–4368 (2019). https://doi.org/10.1007/s00289-018-2605-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2605-6

Keywords

Navigation