Skip to main content
Log in

Core–shell natural rubber and its effect on toughening and mechanical properties of poly(methyl methacrylate)

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Core–shell natural rubber (CSNR), or encapsulated NR, was obtained by admicellar polymerization of poly(methyl methacrylate)-co-poly(3-trimethoxy silylpropyl methacrylate) (PMMA-co-PMPS) covering onto the NR particles. The core–shell structure was clearly observed in TEM micrographs. The presence of siloxane crosslinks in the shell was confirmed by FT-IR spectra. The obtained CSNR (containing NR core 70.85 wt% and polymeric shell 29.15 wt%) at 1–10 wt% loading was used to improve toughness and mechanical properties of PMMA. SEM micrographs revealed that the CSNR had excellent compatibility and good interfacial adhesion to the PMMA matrix. The impact strength of CSNR-PMMA blends increased with CSNR content having the maximum at about 5.85 kJ/m2, which is 23% higher than neat PMMA (4.58 kJ/m2). The elongation at break clearly improved to the maximum at 5 wt% CSNR, and tensile toughness was about 219% higher than for neat PMMA, while elongation was about 91% higher than for neat PMMA. Several toughening mechanisms (rubber cavitation, plastic yielding of the matrix, and partial pull-out of rubber) appeared in the impact test, while the mechanisms for tensile toughening included rubber cavitation and crazing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Lalande L, Plummer CJ-G, Manson JAE, Gerard P (2006) Microdeformation mechanisms in rubber toughened PMMA and PMMA-based copolymers. Eng Fract Mech 73(16):2413–2426. https://doi.org/10.1016/j.engfracmech.2006.05.014

    Article  Google Scholar 

  2. Cheng S-K, Chen C-Y (2004) Mechanical properties and strain-rate effect of EVA-PMMA in situ polymerization blends. Eur Polym J 40(6):1239–1248. https://doi.org/10.1016/j.eurpolymj.2003.11.022

    Article  CAS  Google Scholar 

  3. Ayre DS, Bucknall CB (1998) Particle cavitation in rubber-toughened PMMA: experimental testing of energy-balance criterion. Polymer 3(20):4785–4791. https://doi.org/10.1016/S0032-3861(97)10253-1

    Article  Google Scholar 

  4. Bicerano J (1993) Prediction of polymer properties, 3rd edn. Marcel Dekker Inc., New York, pp 411–423

    Google Scholar 

  5. Bucknall C, Rizzieri R, Moore D (2000) Detection of incipient rubber particle cavitation in toughened PMMA using dynamic mechanical tests. Polymer 41(11):4149–4156. https://doi.org/10.1016/S0032-3861(99)00639-4

    Article  CAS  Google Scholar 

  6. Ramsteiner F, Heckmann W, McKee G, Breulmann M (2002) Influence of void formation on impact toughness in rubber modified styrenic-polymers. Polymer 43(22):5995–6003. https://doi.org/10.1016/S0032-3861(02)00485-8

    Article  CAS  Google Scholar 

  7. Bucknalla C, Ayre D, Dijkstrab D (2000) Detection of rubber particle cavitation in toughened plastics using thermal contraction tests. Polymer 41(15):5937–5947. https://doi.org/10.1016/S0032-3861(99)00799-5

    Article  Google Scholar 

  8. Kopesky E, McKinley G, Cohen R (2006) Toughened poly(methyl methacrylate) nanocomposites by incorporating polyhedral oligomeric silsesquioxanes. Polymer 47:299–309. https://doi.org/10.1016/j.polymer.2005.10.143

    Article  CAS  Google Scholar 

  9. Lovell PA, McDonald J, Saunders D, Sherratt M, Young R (1993) Multiple-phase toughening particle morphology: effect on the properties of rubber-toughened poly(methyl methacrylate). Adv Chem 233:61–77. https://doi.org/10.1021/ba-1993-0233.ch003

    Article  CAS  Google Scholar 

  10. Cho K, Yang J, Park CE (1997) The effect of interfacial adhesion on toughening behaviour of rubber modified poly(methyl methacrylate). Polymer 38(20):5161–5167. https://doi.org/10.1016/S0032-3861(97)00052-9

    Article  CAS  Google Scholar 

  11. An J, Kang B-H, Choi B-H, Kim H-J (2014) Observation and evaluation of scratch characteristics of injection-molded poly(methyl methacrylate) toughened by acrylic rubbers. Tribol Int 77:32–42. https://doi.org/10.1016/j.triboint.2014.04.011

    Article  CAS  Google Scholar 

  12. Stenzler JS, Goulbourne NC (2011) The effect of polyacrylate mocrostructure on the impact response of PMMA/PC multi-laminates. Int J Impact Eng 38(7):576-576. https://doi.org/10.1016/j.ijimpeng.2011.02.003

    Article  Google Scholar 

  13. Chung J-S, Choi K-R, Wu J-P, Han C-S, Lee C-H (2011) Effect of poly(butyl acrylate)-poly(methyl methacrylate) rubber particle texture on the toughening behavior of poly(methyl methacrylate). Korea Polym J 9(2):122–128

    Google Scholar 

  14. Thiraphattaraphun L, Kiatkamjornwong S, Prasassarakich P, Damro S (2001) Natural rubber-g-methyl methacrylate/poly(methyl methacrylate) blends. J Appl Polym Sci 81:428–439. https://doi.org/10.1002/app.1455

    Article  CAS  Google Scholar 

  15. Nooma S, Magaraphan R (2013) Influence of natural rubber/poly(3-trimethoxysilyl propyl methacrylate) core–shell compatibilizer on dynamic, mechanical and morphological properties of PMMA/ENR blends. Adv Mater Res 747:538–541. https://doi.org/10.4028/www.scientific.net/AMR.747.538

    Article  Google Scholar 

  16. Poomalai P, Varhhese TO, Siddaramaiah (2011) Thermomechanical behaviour of poly(methyl methacrylate)/copoly(ether-ester) blends. ISRN Mater Sci 2001:1–5. https://doi.org/10.5402/2011/921293

    Article  CAS  Google Scholar 

  17. Marcu I, Daniels ES, Dimonie VL, Roberts JE, El-Aasser MS (2004) A miniemulsion approach to the incorporation of vinyltriethoxysilane into acrylate latexes. Prog Colloid Polym Sci 124:31–36. https://doi.org/10.1007/978-3-540-36474-0_7

    Article  CAS  Google Scholar 

  18. Kan CY, Liu DS, Kong XZ, Zhu XL (2001) Study on the preparation and properties of styrene–butyl acrylate–silicone copolymer latices. J Appl Polym Sci 82:3194–3200. https://doi.org/10.1002/app.2178

    Article  CAS  Google Scholar 

  19. Li H, Liu S, Zhao J, Li D, Yuan Y (2013) Thermal degradation behaviors of polydimethylsiloxane-graft-poly(methyl methacrylate). Thermochem Acta 573:32–38. https://doi.org/10.1016/j.tca.2013.09.014

    Article  CAS  Google Scholar 

  20. Wei H, Cheng C, Chang C, Chen W-Q, Cheng S-X, Zhang X, Zhou R-X (2008) Synthesis and applications of shell cross-linked thermoresponsive hybrid micells based on poly(N-isopropylacrylamide-co-3-(trimethoxysilyl) propyl methacrylate)-b-poly(methyl methacrylate). Langmuir 24(9):4564–4570. https://doi.org/10.1021/la703320h

    Article  CAS  PubMed  Google Scholar 

  21. Donescua D, Tedorescu M, Serban S, Fusulan L, Petcu C (1999) Hybrid materials obtained in microemulsion from methyl methacrylate, methacryloxypropyltrimethoxysilane, tetraethoxysilane. Eur Polym J 35(9):1679–1686. https://doi.org/10.1016/S0014-3057(98)00260-2

    Article  Google Scholar 

  22. Corcione CE, Striani RS, Frigione M (2013) Microgel modified UV-cured methacrylic-silica hybrid: synthesis and characterization. Materials 6(9):3805–3825. https://doi.org/10.3390/ma6093805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Watcharakul N, Poompradub S, Prasassarakich P (2011) In situ silica reinforcement of methyl methacrylate grafted natural rubber by sol–gel process. J Sol-Gel Sci Technol 58(2):407–418. https://doi.org/10.1007/s10971-011-2407-x

    Article  CAS  Google Scholar 

  24. Pongpilaipruet A, Magaraphan R (2015) Synthesis, characterization and degradation behavior of admicelled polyacrylate-natural rubber. Mater Chem Phys 160:194–204. https://doi.org/10.1016/j.matchemphys.2015.04.024

    Article  CAS  Google Scholar 

  25. Vitry S, Mezzino A, Gautherine C, Cavaille J-Y, Lefebvre F, Bourgeat-Lami E (2003) Hybrid copolymer latexs cross-linked with methacryloxy propyl trimethyl silane: flim formation and mechanical properties. C R Chim 6(11–12):1285–1293. https://doi.org/10.1016/j.crci.2003.07.011

    Article  CAS  Google Scholar 

  26. Magaraphan R, Srinarong V (2009) Admicellar polymerization of polystyrene on natural rubber particles. J Elastom Plast 41(5):457–477. https://doi.org/10.1177/0095244309340982

    Article  CAS  Google Scholar 

  27. Yuan L, Wang Y, Pan M, Rempel G, Pan Q (2013) Synthesis of poly(methyl methacrylate) nanoparticles via differential microemulsion polymerization. Eur Polym J 49(1):41–48. https://doi.org/10.1016/j.eurpolymj.2012.10.005

    Article  CAS  Google Scholar 

  28. Hashemi-Nasab R, Mirabedini SM (2013) Effect of silica nanoparticles surface treatment on in situ polymerization of styrene-butyl acrylate latex. Prog Org Coat 76(7–8):1016–1023. https://doi.org/10.1016/j.porgcoat.2013.02.016

    Article  CAS  Google Scholar 

  29. Shirosaki Y, Kubo M, Takashima S, Tsuru K, Hayakawa S, Osaka A (2005) In vitro apatite formation on organic polymers modified with a silane coupling reagent. J R Soc Interface 2(4):335–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dimier F, Vergnes B, Vincent M (2004) Relationships between mastication conditions and rheological behavior of a natural rubber. Rheol Acta 43(2):196–202. https://doi.org/10.1007/s00397-003-0342-7

    Article  CAS  Google Scholar 

  31. Chen X, Li C, Xu S, Zhang L, Shao W, Du HL (2006) Interfacial adhesion and mechanical properties of PMMA-coated CaCO3 nanoparticle reinforced PVC composites. China Particuol 4(1):25–30. https://doi.org/10.1016/S1672-2515(07)60228-0

    Article  CAS  Google Scholar 

  32. Correa CA, de-Sousa JA (1997) Rubber particle size and cavitation process in high impact polystyrene blends. J Mater Sci 32(24):6539–6547. https://doi.org/10.1023/A:1018615411923

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Ratchadapiseksompoch Endowment (Petchchommpoo), Chulalongkorn University, Thailand. The Ph.D. scholarship was support by Prince of Songkla University, Hat Yai and Suratthani Campus, Thailand. The helpful suggestions by Assoc. Prof. Dr. Seppo Karrila from the Faculty of Science and Industrial Technology, Prince of Songkla University, Suratthani Campus, on a draft manuscript, are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rathanawan Magaraphan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nooma, S., Magaraphan, R. Core–shell natural rubber and its effect on toughening and mechanical properties of poly(methyl methacrylate). Polym. Bull. 76, 3329–3354 (2019). https://doi.org/10.1007/s00289-018-2547-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2547-z

Keywords

Navigation