Skip to main content
Log in

In situ silica reinforcement of methyl methacrylate grafted natural rubber by sol–gel process

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In situ silica reinforcement of natural rubber (NR) grafted with methyl methacrylate (MMA) (MMA-GNR) was achieved via the sol–gel reaction of tetraethoxysilane (TEOS) by the use of solid rubber and latex solutions. Silica contents within the MMA-GNR as high as 48 and 19 phr were obtained when using the solid rubber and latex solutions, respectively, under optimum conditions. The conversion efficiency of TEOS to silica was close to 95%. The in situ formed silica MMA-GNR/NR composite vulcanizates were prepared. MMA-GNR/NR composite vulcanizates reinforced with the in situ formed silica prepared by either method had similar mechanical properties to each other, but a shorter cure time and higher mechanical properties than those reinforced with the commercial silica at 9 phr. The TEM micrographs confirmed that the in situ formed silica particles were well dispersed within the MMA-GNR/NR composite matrix, whilst the commercial silica particles showed a significant level of agglomeration and a lower level of dispersion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Muroi S, Hashimoto H, Hosoi K (1984) Morphology of core-shell latex particles. J Appl Polym Sci 22:1365–1372

    CAS  Google Scholar 

  2. Merkel MP, Domonie V, El-Aasser MS, Vanderhoff JW (1987) Process parameters and their effect on grafting reactions in core/shell latexes. J Appl Polym Sci 25:1755–1767

    Article  CAS  Google Scholar 

  3. Dimonie V, El-Aasser MS, Vanderhoff JW (1984) Core-shell emulsion copolymerization of styrene and acrylonitrile on polystyrene seed particles. J Polym Sci Part A-1 Polym Chem 22:2197–2215

    CAS  Google Scholar 

  4. Kochthongrasamee T, Prasassarakich P, Kiatkamjornwong S (2006) Effect of redox initiator on graft copolymerization of methyl methacrylate onto natural rubber. J Appl Polym Sci 101:2587–2601

    Article  CAS  Google Scholar 

  5. Schwaiger B, Blume A (2000) Silica/silane a winning formula in reinforcement. Rubber World 222:32–38

    Google Scholar 

  6. Brinker CJ, Scherer GW (1990) Sol-gel science: The Physics and Chemistry of Sol-gel Processing. Academic Press, New York

    Google Scholar 

  7. Mark JE (1985) Science of ceramic chemical processing. Wiley, New York, Chapter 47

    Google Scholar 

  8. Kohjiya S, Ikeda Y (2000) Reinforcement of general-purpose grade rubbers by silica generated in situ. Rubber Chem Technol 73:534–550

    Article  CAS  Google Scholar 

  9. Ikeda Y, Tanaka A, Kohjiya S (1997) Effect of catalyst on in situ silica reinforcement of styrene–butadiene rubber vulcanizate by the sol–gel reaction of tetraethoxysilane. J Mater Chem 7:445–458

    Google Scholar 

  10. Hashim A, Kawabata N, Kohjiya S (1995) Silica reinforcement of epoxidized natural rubber by sol-gel method. J Sol-Gel Sci Technol 5:211–218

    Article  CAS  Google Scholar 

  11. Bandyopadhyay A, Sarkar MD, Bhowmick AK (2005) Epoxidised natural rubber/silica hybrid nanocomposites by sol-gel technique: effect of reactants on the structure and the properties. J Mater Sci 40:53–62

    Article  CAS  Google Scholar 

  12. Ikeda Y, Kohjiya S (1997) In situ formed silica particles in rubber vulcanizate by the sol-gel method. Polymer 38:4417–4423

    Article  CAS  Google Scholar 

  13. Ikeda Y, Katoh A, Shimanuki J, Kohjiya S (2004) Nano-structural observation of in situ silica in natural rubber matrix by three dimensional transmission electron microscopy. Macromol Rapid Commun 25:1186–1190

    Article  CAS  Google Scholar 

  14. Poompradub S, Kohjiya S, Ikeda Y (2005) Natural rubber/in situ silica nanocomposite of a high silica content. Chem Lett 34:672

    Article  CAS  Google Scholar 

  15. Ikeda Y, Poompradub S, Kohjiya S, Morita Y (2008) Preparation of high performance nanocomposite elastomer: effect of reaction conditions on in situ silica generation of high content in natural rubber. J Sol-Gel Sci Technol 34:299–306

    Article  Google Scholar 

  16. Chaichua B, Prasassarakich P, Poompradub S (2009) In situ silica reinforcement of natural rubber by sol-gel reaction via rubber solution. J Sol Gel Sci. Tech. 52:219–306

    Article  CAS  Google Scholar 

  17. Yoshikai K, Ohsaki T, Furukawa M (2002) Silica reinforcement of synthetic diene rubbers by sol–gel process in the latex. J Appl Polym Sci 85:2053–2063

    Article  CAS  Google Scholar 

  18. Landry CJ, Contrain KB, Brady BK (1992) In situ polymerization of tetraethoxysilane in poly (methyl methacrylate): morphology and dynamic mechanical properties. Polymer 33:1486–1506

    Article  CAS  Google Scholar 

  19. Silveira FK, Yoshida VP, Nunes PS (1995) Phase separation in PMMA/silica sol-gel systems. Polymer 36:1425–1434

    Article  CAS  Google Scholar 

  20. Zulficar AM, Mohammad WA, Kadhum AA, Hilal N (2007) Synthesis and characterization of poly(methyl methacrylate)/SiO2 hybrid membrane. J Mater Sci 45:422–426

    Google Scholar 

  21. Tangpasuthadol V, Intasiri A, Nuntivanich D, Niyompanich N, Kiatkamjornwong S (2008) Silica-reinforced natural rubber prepared by the sol–gel process of ethoxysilanes in rubber latex. J Appl Polym Sci 109:424–433

    Article  CAS  Google Scholar 

  22. Xu H, Liu J, Fang L, Wu C (2007) In situ grafting onto silica surface with epoxidized natural rubber via solid state method. J Macromol Sci 46:693–703

    Article  CAS  Google Scholar 

  23. Satraphan P, Intasiri A, Tangpasuthadol V, Kiatkamjornwong S (2009) Effects of methyl methacrylate grafting and in situ silica particle formation on the morphology and mechanical properties of natural rubber composite films. Polym Adv Technol 20:473–486

    Article  CAS  Google Scholar 

  24. Osseo AK, Arriagada FJ (1999) Growth kinetics of nanosize silica in a nonionic water-in-oil microemulsion: a reverse micellar pseudophase reaction model. J Colloid Interface Sci 218:68–76

    Article  Google Scholar 

  25. Debuigne F, Jeunieau L, Wiame M, Nagy JB (2000) Synthesis of organic nanoparticles in different W/O microemulsions. Langmuir 16:7605–7611

    Article  CAS  Google Scholar 

  26. Thiraphattaraphun L, Kiatkamjornwong S, Prasassarakich P, Damronglerd S (2001) Natural rubber-g-methyl methacrylate/poly(methyl methacrylate) blends. J Appl Polym Sci 81:428–439

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The funding support from Toyo Tire & Rubber Co. Ltd. (Japan), the Thai Government Stimulus Package 2 (TKK2555) under the Project for Establishment of Comprehensive Center for Innovative Food, Health Products and Agriculture, the National Research University Project of CHE and the Ratchadaphiseksomphot Endowment Fund (AM1024I) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pattarapan Prasassarakich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watcharakul, N., Poompradub, S. & Prasassarakich, P. In situ silica reinforcement of methyl methacrylate grafted natural rubber by sol–gel process. J Sol-Gel Sci Technol 58, 407–418 (2011). https://doi.org/10.1007/s10971-011-2407-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-011-2407-x

Keywords

Navigation