Skip to main content
Log in

Tunable poly(o-anisidine)/carbon nanotubes nanocomposites as an electrochemical sensor for the detection of an anthelmintic drug mebendazole

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The present work addresses the electrochemical detection of an anthelmintic drug mebendazole (MBZ) using glassy carbon electrode (GCE) modified with the hybrid nanocomposites of poly(o-anisidine) (POA) and multi-walled carbon nanotubes (CNTs). The POA/CNTs (PC) nanocomposites were synthesized with different concentrations of o-anisidine via chemical oxidative polymerization route. The formation of nanocomposites were characterized by field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy studies. The morphological analysis revealed a matrix transition on varying the o-anisidine concentration in the composites. The appropriate selection of polymer and the composite enabled the design of nanostructures with highly tunable charge transport properties. FTIR and Raman studies proposed the existence of interfacial interaction between POA and CNTs which enhanced the sensing efficiency. The electrochemical performance of MBZ on the modified electrode has been examined using cyclic voltammetry, differential pulse voltammetry and chronoamperometry techniques. The best composite ratio for effective determination of MBZ, the oxidation–reduction properties and the electrochemical parameters governing the performance of the modified electrodes were studied by electrochemical approaches. Under the optimized conditions, the oxidation peak current presented a linear relationship with the MBZ concentration in the range from 1.0 to 35.0 µM with a detection limit of 0.4 μM (S/N = 3) by DPV method. The modified electrode was also used for the determination of MBZ in pharmaceutical samples. With the advantages of simplicity and high sensitivity, the fabricated sensor would provide a promising platform for the detection of other such anthelmintic drugs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2
Fig. 8
Scheme 3
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Caira MR, Dekker TG, Liebenberg W (1998) Structure of a 1:1 complex between the anthelmintic drug mebendazole and propionic acid. J Chem Crystallogr 28(1):11–15. doi:10.1023/a:1021766300133

    Article  CAS  Google Scholar 

  2. Swanepoel E, Liebenberg W, de Villiers MM (2003) Quality evaluation of generic drugs by dissolution test: changing the USP dissolution medium to distinguish between active and non-active mebendazole polymorphs. Eur J Pharm Biopharm 55(3):345–349. doi:10.1016/S0939-6411(03)00004-3

    Article  CAS  PubMed  Google Scholar 

  3. de Silva NR, Brooker S, Hotez PJ, Montresor A, Engels D, Savioli L (2003) Soil-transmitted helminth infections: updating the global picture. Trends Parasitol 19(12):547–551. doi:10.1016/j.pt.2003.10.002

    Article  PubMed  Google Scholar 

  4. Brooker S, Clements ACA, Bundy DAP (2006) Global epidemiology, ecology and control of soil-transmitted helminth infections. Adv Parasitol 62:221–261. doi:10.1016/s0065-308x(05)62007-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brooker S (2010) Estimating the global distribution and disease burden of intestinal nematode infections: adding up the numbers—a review. Int J Parasitol 40(10):1137–1144. doi:10.1016/j.ijpara.2010.04.004

    Article  PubMed  PubMed Central  Google Scholar 

  6. Dayan AD (2003) Albendazole, mebendazole and praziquantel. Review of non-clinical toxicity and pharmacokinetics. Acta Trop 86(2):141–159. doi:10.1016/S0001-706X(03)00031-7

    Article  CAS  PubMed  Google Scholar 

  7. Münst GJ, Karlaganis G, Bircher J (1980) Plasma concentrations of mebendazole during treatment of echinococcosis. Eur J Clin Pharmacol 17(5):375–378. doi:10.1007/bf00558451

    Article  PubMed  Google Scholar 

  8. Crompton DWT et al. (2003) Controlling disease due to helminth infections. World Health Organization, Geneva.http://nla.gov.au/nla.cat-vn3109618. Accessed 1 Jan 2004

  9. Kar A (1985) Spectrophotometric determination of mebendazole in pure and dosage forms by complexation with potassium bismuth(III) iodide. Analyst 110(8):1031–1033. doi:10.1039/an9851001031

    Article  CAS  PubMed  Google Scholar 

  10. Argekar AP, Raj SV, Kapadia SU (1997) Simultaneous determination of mebendazole and pyrantel pamoate from tablets by high performance liquid chromatography-reverse phase (RP-HPLC). Talanta 44(11):1959–1965. doi:10.1016/S0039-9140(96)02118-2

    Article  CAS  PubMed  Google Scholar 

  11. Facino RM, Carini M, Traldi P (1992) Application of collisionally activated decomposition mass-analysed ion kinetic energy spectrometry to a survey of sheep milk for benzimidazole residues in relation to withdrawal periods. Biol Mass Spectrom 21(4):195–201. doi:10.1002/bms.1200210404

    Article  CAS  PubMed  Google Scholar 

  12. Balizs G (1999) Determination of benzimidazole residues using liquid chromatography and tandem mass spectrometry. J Chromatogr B Biomed Sci Appl 727(1):167–177. doi:10.1016/S0378-4347(99)00052-3

    Article  CAS  PubMed  Google Scholar 

  13. Ghalkhani M, Shahrokhian S (2013) Adsorptive stripping differential pulse voltammetric determination of mebendazole at a graphene nanosheets and carbon nanospheres/chitosan modified glassy carbon electrode. Sens Actuators B Chem 185:669–674. doi:10.1016/j.snb.2013.05.054

    Article  CAS  Google Scholar 

  14. Munusamy S, Suresh R, Giribabu K, Manigandan R, Praveen Kumar S, Muthamizh S, Bagavath C, Stephen A, Kumar J, Narayanan V (2015) Synthesis and characterization of GaN/PEDOT–PPY nanocomposites and its photocatalytic activity and electrochemical detection of mebendazole. Arab J Chem. doi:10.1016/j.arabjc.2015.10.012

    Article  Google Scholar 

  15. Khan R, Solanki PR, Kaushik A, Singh SP, Ahmad S, Malhotra BD (2009) Cholesterol biosensor based on electrochemically prepared polyaniline conducting polymer film in presence of a nonionic surfactant. J Polym Res 16(4):363–373. doi:10.1007/s10965-008-9237-8

    Article  CAS  Google Scholar 

  16. Satheesh Babu TG, Varadarajan D, Murugan G, Ramachandran T, Nair BG (2012) Gold nanoparticle–polypyrrole composite modified TiO2 nanotube array electrode for the amperometric sensing of ascorbic acid. J Appl Electrochem 42(6):427–434. doi:10.1007/s10800-012-0416-2

    Article  CAS  Google Scholar 

  17. Palod PA, Pandey SS, Hayase S, Singh V (2014) Template-assisted electrochemical growth of polypyrrole nanotubes for development of high sensitivity glucose biosensor. Appl Biochem Biotechnol 174(3):1059–1072. doi:10.1007/s12010-014-0988-x

    Article  CAS  PubMed  Google Scholar 

  18. Zhou D-M, Dai Y-Q, Shiu K-K (2010) Poly(phenylenediamine) film for the construction of glucose biosensors based on platinized glassy carbon electrode. J Appl Electrochem 40(11):1997–2003. doi:10.1007/s10800-010-0179-6

    Article  CAS  Google Scholar 

  19. Zhang L, Wen Y, Yao Y, Xu J, Duan X, Zhang G (2014) Synthesis and characterization of PEDOT Derivative with carboxyl group and its chemo/bio sensing application as nanocomposite, immobilized biological and enhanced optical materials. Electrochim Acta 116:343–354. doi:10.1016/j.electacta.2013.11.042

    Article  CAS  Google Scholar 

  20. Du D, Cai J, Song D, Zhang A (2007) Rapid determination of triazophos using acetylcholinesterase biosensor based on sol–gel interface assembling multiwall carbon nanotubes. J Appl Electrochem 37(8):893–898. doi:10.1007/s10800-007-9328-y

    Article  CAS  Google Scholar 

  21. Radoi A, Obreja AC, Eremia SAV, Bragaru A, Dinescu A, Radu GL (2013) l-Lactic acid biosensor based on multi-layered graphene. J Appl Electrochem 43(10):985–994. doi:10.1007/s10800-013-0594-6

    Article  CAS  Google Scholar 

  22. Dong X, Ma Y, Zhu G, Huang Y, Wang J, Chan-Park MB, Wang L, Huang W, Chen P (2012) Synthesis of graphene-carbon nanotube hybrid foam and its use as a novel three-dimensional electrode for electrochemical sensing. J Mater Chem 22(33):17044–17048. doi:10.1039/c2jm33286h

    Article  CAS  Google Scholar 

  23. Zhou S, Li J, Zhang F, Zhang T, Huang H, Song W (2015) Dispersible mesoporous carbon nanospheres as active electrode materials for biomolecular sensing. Microporous Mesoporous Mater 202:73–79. doi:10.1016/j.micromeso.2014.09.052

    Article  CAS  Google Scholar 

  24. Lawal AT (2016) Synthesis and utilization of carbon nanotubes for fabrication of electrochemical biosensors. Mater Res Bull 73:308–350. doi:10.1016/j.materresbull.2015.08.037

    Article  CAS  Google Scholar 

  25. Feng X, Yan Z, Li R, Liu X, Hou W (2013) The synthesis of shape-controlled polypyrrole/graphene and the study of its capacitance properties. Polym Bull 70(8):2291–2304. doi:10.1007/s00289-013-0952-x

    Article  CAS  Google Scholar 

  26. Sun W, Mo Z (2014) Synthesis, characterization and supercapacitors of electrically conductive PPy/graphene/rare earth ions composites. Polym Bull 71(9):2173–2184. doi:10.1007/s00289-014-1177-3

    Article  CAS  Google Scholar 

  27. Teixeira SR, Lloyd C, Yao S, Andrea Salvatore G, Whitaker IS, Francis L, Conlan RS, Azzopardi E (2016) Polyaniline-graphene based α-amylase biosensor with a linear dynamic range in excess of 6 orders of magnitude. Biosens Bioelectron 85:395–402. doi:10.1016/j.bios.2016.05.034

    Article  CAS  PubMed  Google Scholar 

  28. Radhapyari K, Kotoky P, Das MR, Khan R (2013) Graphene–polyaniline nanocomposite based biosensor for detection of antimalarial drug artesunate in pharmaceutical formulation and biological fluids. Talanta 111:47–53. doi:10.1016/j.talanta.2013.03.020

    Article  CAS  PubMed  Google Scholar 

  29. Kulkarni MV, Kale BB (2013) Studies of conducting polyaniline (PANI) wrapped-multiwalled carbon nanotubes (MWCNTs) nanocomposite and its application for optical pH sensing. Sens Actuators B Chem 187:407–412. doi:10.1016/j.snb.2012.12.106

    Article  CAS  Google Scholar 

  30. Bo Y, Yang H, Hu Y, Yao T, Huang S (2011) A novel electrochemical DNA biosensor based on graphene and polyaniline nanowires. Electrochim Acta 56(6):2676–2681. doi:10.1016/j.electacta.2010.12.034

    Article  CAS  Google Scholar 

  31. Feng X, Cheng H, Pan Y, Zheng H (2015) Development of glucose biosensors based on nanostructured graphene-conducting polyaniline composite. Biosens Bioelectron 70:411–417. doi:10.1016/j.bios.2015.03.046

    Article  CAS  PubMed  Google Scholar 

  32. Abdulla S, Mathew TL, Pullithadathil B (2015) Highly sensitive, room temperature gas sensor based on polyaniline-multiwalled carbon nanotubes (PANI/MWCNTs) nanocomposite for trace-level ammonia detection. Sens Actuators B Chem 221:1523–1534. doi:10.1016/j.snb.2015.08.002

    Article  CAS  Google Scholar 

  33. Zou Y, Sun L-X, Xu F (2007) Biosensor based on polyaniline–Prussian Blue/multi-walled carbon nanotubes hybrid composites. Biosens Bioelectron 22(11):2669–2674. doi:10.1016/j.bios.2006.10.035

    Article  CAS  PubMed  Google Scholar 

  34. Fang Y, Jiang Q, Deng M, Tian Y, Wen Q, Wang M (2015) Preparation in situ of carbon nanotubes/polyaniline modified electrode and application for ascorbic acid detection. J Electroanal Chem 755:39–46. doi:10.1016/j.jelechem.2015.07.039

    Article  CAS  Google Scholar 

  35. Benykhlef S, Bekhoukh A, Berenguer R, Benyoucef A, Morallon E (2016) PANI-derived polymer/Al2O3 nanocomposites: synthesis, characterization, and electrochemical studies. Colloid Polym Sci 294(12):1877–1885. doi:10.1007/s00396-016-3955-y

    Article  CAS  Google Scholar 

  36. Khaldi M, Benyoucef A, Quijada C, Yahiaoui A, Morallon E (2014) Synthesis, characterization and conducting properties of nanocomposites of intercalated 2-aminophenol with aniline in sodium-montmorillonite. J Inorg Organomet Polym Mater 24(2):267–274. doi:10.1007/s10904-013-9998-3

    Article  CAS  Google Scholar 

  37. Dahou FZ, Khaldi MA, Zehhaf A, Benyoucef A, Ferrahi MI (2016) Nanocomposite of 2-aminophenol with aniline using copper-montmorillonite: synthesis, characterization, conductivity, and electrochemical study. Adv Polym Technol 35(4):411–418. doi:10.1002/adv.21566

    Article  CAS  Google Scholar 

  38. Chouli F, Radja I, Morallon E, Benyoucef A (2015) A novel conducting nanocomposite obtained by p-anisidine and aniline with titanium(IV) oxide nanoparticles: synthesis, Characterization, and Electrochemical properties. Polymer Compos. doi:10.1002/pc.23837 (n/a-n/a)

    Article  Google Scholar 

  39. Chouli F, Zehhaf A, Benyoucef A (2014) Preparation and characterization of the new conducting composites obtained from 2-methylaniline and aniline with activated carbon by in situ intercalative oxidative polymerization. Macromol Res 22(1):26–31. doi:10.1007/s13233-014-2005-1

    Article  CAS  Google Scholar 

  40. Radja I, Djelad H, Morallon E, Benyoucef A (2015) Characterization and electrochemical properties of conducting nanocomposites synthesized from p-anisidine and aniline with titanium carbide by chemical oxidative method. Synth Met 202:25–32. doi:10.1016/j.synthmet.2015.01.028

    Article  CAS  Google Scholar 

  41. Patil D, Patil P, Seo Y-K, Hwang YK (2010) Poly(o-anisidine)–tin oxide nanocomposite: synthesis, characterization and application to humidity sensing. Sens Actuators B Chem 148(1):41–48. doi:10.1016/j.snb.2010.04.046

    Article  CAS  Google Scholar 

  42. Angaleeswari B, Dura Amirtham RM, Jeevithaa T, Vaishnavi V, Eevera T, Berchmans S, Yegnaraman V (2008) Poly(o-anisidine)–anion composite films as sensing platform for biological molecules. Sens Actuators B Chem 129(2):558–565. doi:10.1016/j.snb.2007.09.003

    Article  CAS  Google Scholar 

  43. Sangamithirai D, Narayanan V, Muthuraaman B, Stephen A (2015) Investigations on the performance of poly(o-anisidine)/graphene nanocomposites for the electrochemical detection of NADH. Mater Sci Eng C 55:579–591. doi:10.1016/j.msec.2015.05.066

    Article  CAS  Google Scholar 

  44. Jafari Y, Shabani-Nooshabadi M, Ghoreishi SM (2014) Electropolymerized coatings of poly(o-anisidine) and poly(o-anisidine)-TiO2 nanocomposite on aluminum alloy 3004 by using the galvanostatic method and their corrosion protection performance. Polym Adv Technol 25(3):279–287. doi:10.1002/pat.3233

    Article  CAS  Google Scholar 

  45. Basnayaka PA, Ram MK, Stefanakos L, Kumar A (2013) High performance graphene-poly (o-anisidine) nanocomposite for supercapacitor applications. Mater Chem Phys 141(1):263–271. doi:10.1016/j.matchemphys.2013.05.009

    Article  CAS  Google Scholar 

  46. Patil D, Seo Y-K, Hwang YK, Chang J-S, Patil P (2008) Humidity sensing properties of poly(o-anisidine)/WO3 composites. Sens Actuators B Chem 128(2):374–382. doi:10.1016/j.snb.2007.06.026

    Article  CAS  Google Scholar 

  47. Zachara JE, Toczyłowska R, Pokrop R, Zagórska M, Dybko A, Wróblewski W (2004) Miniaturised all-solid-state potentiometric ion sensors based on PVC-membranes containing conducting polymers. Sens Actuators B Chem 101(1):207–212. doi:10.1016/j.snb.2004.02.052

    Article  CAS  Google Scholar 

  48. Zhang M, Smith A, Gorski W (2004) Carbon nanotube—chitosan system for electrochemical sensing based on dehydrogenase enzymes. Anal Chem 76(17):5045–5050. doi:10.1021/ac049519u

    Article  CAS  PubMed  Google Scholar 

  49. Deng C, Chen J, Chen X, Xiao C, Nie Z, Yao S (2008) Boron-doped carbon nanotubes modified electrode for electroanalysis of NADH. Electrochem Commun 10(6):907–909. doi:10.1016/j.elecom.2008.04.015

    Article  CAS  Google Scholar 

  50. Mechrez G, Suckeveriene RY, Zelikman E, Rosen J, Ariel-Sternberg N, Cohen R, Narkis M, Segal E (2012) Highly-tunable polymer/carbon nanotubes systems: preserving dispersion architecture in solid composites via rapid microfiltration. ACS Macro Lett 1(7):848–852. doi:10.1021/mz300145a

    Article  CAS  Google Scholar 

  51. Szleifer I, Yerushalmi-Rozen R (2005) Polymers and carbon nanotubes—dimensionality, interactions and nanotechnology. Polymer 46(19):7803–7818. doi:10.1016/j.polymer.2005.05.104

    Article  CAS  Google Scholar 

  52. Mahajan LH, Mhaske ST (2012) Composite microspheres of poly(o-anisidine)/TiO2. Mater Lett 68:183–186. doi:10.1016/j.matlet.2011.10.025

    Article  CAS  Google Scholar 

  53. Pham QL, Haldorai Y, Nguyen VH, Tuma D, SHIM J-J (2011) Facile synthesis of poly(p-phenylenediamine)/MWCNT nanocomposites and characterization for investigation of structural effects of carbon nanotubes. Bull Mater Sci 34(1):37–43. doi:10.1007/s12034-011-0049-9

    Article  CAS  Google Scholar 

  54. Sestrem RH, Ferreira DC, Landers R, Temperini MLA, do Nascimento GM GM (2009) Structure of chemically prepared poly-(para-phenylenediamine) investigated by spectroscopic techniques. Polymer 50(25):6043–6048. doi:10.1016/j.polymer.2009.10.028

    Article  CAS  Google Scholar 

  55. Jung YC, Kim HH, Kim YA, Kim JH, Cho JW, Endo M, Dresselhaus MS (2010) Optically active multi-walled carbon nanotubes for transparent, conductive memory-shape polyurethane film. Macromolecules 43(14):6106–6112. doi:10.1021/ma101039y

    Article  CAS  Google Scholar 

  56. Zhu J, Chen M, Qu H, Zhang X, Wei H, Luo Z, Colorado HA, Wei S, Guo Z (2012) Interfacial polymerized polyaniline/graphite oxide nanocomposites toward electrochemical energy storage. Polymer 53(25):5953–5964. doi:10.1016/j.polymer.2012.10.002

    Article  CAS  Google Scholar 

  57. Liu Y, She P, Gong J, Wu W, Xu S, Li J, Zhao K, Deng A (2015) A novel sensor based on electrodeposited Au–Pt bimetallic nano-clusters decorated on graphene oxide (GO)—electrochemically reduced GO for sensitive detection of dopamine and uric acid. Sens Actuators B Chem 221:1542–1553. doi:10.1016/j.snb.2015.07.086

    Article  CAS  Google Scholar 

  58. Bard A, Faulkner L (2001) Electrochemical methods: fundamentals and applications. Wiley, New York. ISBN 0-471-04372-9

    Google Scholar 

Download references

Acknowledgements

One of the authors DS, thank DST, New Delhi, India for the financial support received in the form of INSPIRE fellowship (IF 120706). The authors thank the support from NCNSNT, University of Madras and SAIF, IIT, Chennai, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Stephen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 491 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sangamithirai, D., Munusamy, S., Narayanan, V. et al. Tunable poly(o-anisidine)/carbon nanotubes nanocomposites as an electrochemical sensor for the detection of an anthelmintic drug mebendazole. Polym. Bull. 75, 3127–3147 (2018). https://doi.org/10.1007/s00289-017-2187-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2187-8

Keywords

Navigation