Skip to main content
Log in

The synthesis of shape-controlled polypyrrole/graphene and the study of its capacitance properties

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Polypyrrole (PPy)/graphene nainocomposite was prepared by methyl orange (MO) reactive template. By changing the amount of MO, the morphology of PPy can be controlled to range from nanoparticle to nanowire. Transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction results demonstrated that the composites were successfully synthesized. The different morphologies of PPy/graphene nanocomposites had certain effects on the supercapacitor performance. The experimental results showed that the capacitance of PPy (nanoparticle)/graphene was higher than that of PPy (nanowire)/graphene. As a model, PPy (nanoparticle)/graphene was used to construct a supercapacitor. By changing the amount of pyrrole monomer, the performance of the supercapacitor prepared from different PPy content was studied in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cui X, Li CM, Zang J, Zhou Q, Gan Y, Bao H, Guo J, Lee VS, Moochhala SM (2007) Biocatalytic Generation of ppy-enzyme-CNT nanocomposite: from network assembly to film growth. J Phys Chem C 111:2025–2031

    Article  CAS  Google Scholar 

  2. Liew SY, Thielemans W, Walsh DA (2010) Electrochemical capacitance of nanocomposite polypyrrole/cellulose films. J Phys Chem C 114:17926–17933

    Article  CAS  Google Scholar 

  3. Feng XM, Sun ZZ, Hou WH, Zhu JJ (2007) Synthesis of functional polypyrrole/prussian blue and polypyrrole/Ag composite microtubes by using a reactive template. Nanotechnology 18:195603(1–7)

  4. Wang J, Dai J, Yarlagadda T (2005) Carbon nanotube—conducting-Polymer composite nanowires. Langmuir 21:9–12

    Article  Google Scholar 

  5. Gu Z, Li C, Wang G, Zhuang L, Li X, Wang W, Jin S (2010) Synthesis and characterization of polypyrrole/graphite oxide composite by in situ emulsion polymerization. J Polym Sci Pol Phys 48:1329–1335

    Article  CAS  Google Scholar 

  6. Yang X, Zhu Z, Dai T, Lu Y (2005) Facile fabrication of functional polypyrrole nanotubes via a reactive self-degraded template. Macromol Rapid Com 26:1736–1740

    Article  CAS  Google Scholar 

  7. Bagheri H, Ayazi Z (2011) Polypyrrole nanowires network for convenient and highly efficient microextraction in packed syringe. Anal Methods 3:2630–2636

    Article  CAS  Google Scholar 

  8. Zhang L, Liu P, Ju L, Wang L, Zhao S (2010) Polypyrrole nanocapsules via interfacial polymerization. Macromol Res 18:648–652

    Article  Google Scholar 

  9. Sahoo NG, Jung YC, So HH, Cho JW (2007) Polypyffole coated carbon nanotubes: synthesis, characterization, and enhanced electrical properties. Synth Met 157:374–379

    Article  CAS  Google Scholar 

  10. Yang X, Li L (2010) Polypyrrole nanofibers synthesized via reactive template approach and their NH3 gas sensitivity. Synth Met 160:1365–1367

    Article  CAS  Google Scholar 

  11. Zhao Y, Zhan L, Tian J, Nie S, Ning Z (2011) Enhanced electrocatalytic oxidation of methanol on Pd/polypyrrole-graphene in alkaline medium. Electrochim Acta 56:1967–1972

    Article  CAS  Google Scholar 

  12. Zhang D, Zhang X, Chen Y, Yu P, Wang C, Ma Y (2011) Enhanced capacitance and rate capability of graphene/polypyrrole composite as electrode material for supercapacitors. J Power Sour 196:5990–5996

    Article  CAS  Google Scholar 

  13. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  14. Nakada K, Fujita M (1996) Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys Rev B 54:17954–17961

    Article  CAS  Google Scholar 

  15. Han YQ, Hao LA, Zhang XG (2010) Preparation and electrochemical performances of graphite oxide/polypyrrole composites. Synth Met 160:2336–2340

    Article  CAS  Google Scholar 

  16. Du D, Ye XX, Cai J, Liu JA, Zhang AD (2010) Acetylcholinesterase biosensor design based on carbon nanotube-encapsulated polypyrrole and polyaniline copolymer for amperometric detection of organophosphates. Biosens Bioelectron 25:2503–2508

    Article  CAS  Google Scholar 

  17. Whitby RLD, Korobeinyk A, Mikhalovsky SV, Fukuda T, Maekawa T (2011) Morphological effects of single-layer graphene oxide in the formation of covalently bonded polypyrrole composites using intermediate diisocyanate chemistry. J Nanopart Res 13:4829–4837

    Article  CAS  Google Scholar 

  18. Seredych M, Tamashausky T, Bandosz TJ (2010) Graphite oxides obtained from porous graphite: the role of surface chemistry and texture in ammonia retention at ambient conditions. Adv Funct Mater 20:1670–1679

    Article  CAS  Google Scholar 

  19. Huang Y, Qin Y, Zhou Y, Niu H, Yu ZZ, Dong JY (2010) Polypropylene/graphene oxide nanocomposites prepared by in situ ziegler-natta polymerization. Chem Mater 22:4096–4102

    Article  CAS  Google Scholar 

  20. Chen S, Zhu J, Wang X (2010) One-Step Synthesis of graphene–cobalt hydroxide nanocomposites and their electrochemical properties. J Phys Chem C 114:11829–11834

    Article  CAS  Google Scholar 

  21. Zhang LL, Zhao S, Tian XN, Zhao XS (2010) Layered graphene oxide nanostructures with sandwiched conducting polymers as supercapacitor electrodes. Langmuir 26:17624–17628

    Article  CAS  Google Scholar 

  22. Wang Y, Shi Z, Huang Y, Ma Y, Wang C, Chen M (2009) Supercapacitor devices based on graphene materials. J Phys Chem C 113:13103–13107

    Article  CAS  Google Scholar 

  23. Mi H, Zhang X, Ye X, Yang S (2008) Preparation and enhanced capacitance of core-shell polypyrrole/polyaniline composite electrode for supercapacitors. J Power Sour 176:403–409

    Article  CAS  Google Scholar 

  24. Jua YW, Choi GR, Jung HR, Lee W (2008) Electrochemical properties of electrospun PAN/MWCNT carbon nanofibers electrodes coated with polypyrrole. Electrochim Acta 53:5796–5803

    Article  Google Scholar 

  25. Wang ZP, Yusop Z, Ghosh P, Hayashi Y, Tanemura M (2011) Formation of carbon nanostructures containing single-crystalline cobalt carbides by ion irradiation method. Appl Surf Sci 257:3168–3173

    Article  CAS  Google Scholar 

  26. Zhang K, Zhang LL, Zhao XS, Wu J (2010) Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem Mater 22:1392–1401

    Article  CAS  Google Scholar 

  27. Hou H, Ge JJ, Zeng J, Li Q, Reneker DH, Greiner A, Cheng SZD (2005) Electrospun polyacrylonitrile nanofibers containing a high concentration of well-aligned multiwall carbon nanotubes. Chem Mater 17:967–973

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Nos. 20905038, 20903057, 21005040, 21073084, and 20773065), National Basic Research Program of China (No. 2009CB930600).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaomiao Feng or Wenhua Hou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, X., Yan, Z., Li, R. et al. The synthesis of shape-controlled polypyrrole/graphene and the study of its capacitance properties. Polym. Bull. 70, 2291–2304 (2013). https://doi.org/10.1007/s00289-013-0952-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-013-0952-x

Keywords

Navigation