Skip to main content
Log in

Rapid determination of triazophos using acetylcholinesterase biosensor based on sol–gel interface assembling multiwall carbon nanotubes

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A sensitive and stable amperometric sensor has been devised for rapid determination of triazophos based on efficient immobilization of acetylcholinesterase (AChE) on silica sol–gel (SiSG) film assembling multiwall carbon nanotubes (MWNTs). The sol–gel matrix provided a biocompatible microenvironment around the enzyme and efficiently prevented leakage of the enzyme from the film. In the presence of acetylthiocholine chloride (ATCl) as a substrate, MWNTs promoted electron transfer reactions at a lower potential and catalyzed electrochemical oxidation of enzymatically formed thiocholine, thus increasing detection sensitivity. Based on the inhibition of organophosphorous compound on the enzymatic activity of AChE, using triazophos as a model compound, the effects of pH, temperature, and MWNTs contents were explored. Under optimum conditions, the inhibition of triazophos was proportional to its concentration from 0.02 μM to 1 μM and from 5 μM to 30 μM, with a detection limit of 0.005 μM. The determination of triazophos in garlic samples showed acceptable accuracy. Fabrication reproducibility of the sensor was good and stability was acceptable. The sensor is a promising new tool for pesticide analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kumar J, Jha SK, D’Souza SF (2006) Biosens Bioelectron 21:2100

    CAS  Google Scholar 

  2. Kandimalla VB, Ju HX (2005) Chem-Eur J 12:1074

    Article  CAS  Google Scholar 

  3. Solná R, Sapelnikova S, Skládal P, Winther-Nielsen M, Carlsson C, Emnéus J, Ruzgas T (2005) Talanta 65:349

    Article  CAS  Google Scholar 

  4. Chen PS, Huang SD (2006) Talanta 69:669

    Article  CAS  Google Scholar 

  5. Leandro CC, Hancock P, Fussell RJ, Keely BJ (2006) J Chromatogr A 1103:94

    Article  CAS  Google Scholar 

  6. Puig D, Barceló D (1997) J Chromatogr A 778:313

    Article  CAS  Google Scholar 

  7. Wissiack R, Rosenberg E, Grasserbauer M (2000) J Chromatogr A 896:159

    Article  CAS  Google Scholar 

  8. Amine A, Mohammadi H, Bourais I, Palleschi G (2006) Biosens Bioelectron 21:1405

    Article  CAS  Google Scholar 

  9. Trojanowicz M (2002) Electroanalysis 14:19

    Article  Google Scholar 

  10. Schulze H, Vorlová S, Villatte F, Bachmann TT, Schmid RD (2003) Biosens Bioelectron 18:201

    Article  CAS  Google Scholar 

  11. Aldridge WN (1950) Biochem J 46:451

    CAS  Google Scholar 

  12. Gill I, Ballesteros A (2000) Trends Biotechnol 15:282

    Article  Google Scholar 

  13. Gill I (2001) Chem Mater 13:3404

    Article  CAS  Google Scholar 

  14. Yu JH, Liu SQ, Ju HX (2003) Biosens Bioelectron 19:509

    Article  CAS  Google Scholar 

  15. Yu JH, Ju XH (2002) Anal Chem 540:61

    Google Scholar 

  16. Du D, Yan F, Liu SL, Ju HX (2003) J Immunol Methods 283:67

    Article  CAS  Google Scholar 

  17. Iijima S (1991) Nature 354:56

    Article  CAS  Google Scholar 

  18. Ajayan PM (1999) Chem Rev 99:1787

    Article  CAS  Google Scholar 

  19. Odom TW, Huang JL, Kim P, Lieber CM (2000) J Phys Chem B 104:2794

    Article  CAS  Google Scholar 

  20. Baughrman RH, Zakhidov AA, Heer WA (2002) Science 297:787

    Article  Google Scholar 

  21. Huang W, Hu W, Song J (2003) Talanta 61:411

    Article  CAS  Google Scholar 

  22. Davis JJ, Coles RJ, Hill HAO (1997) J Electroanal Chem 440:279

    Article  CAS  Google Scholar 

  23. Wang J, Li M, Shi Z, Li N, Gu Z (2002) Anal Chem 74:1993

    Article  CAS  Google Scholar 

  24. Pedano ML, Rivas GA (2004) Electrochem Commun 6:10

    Article  CAS  Google Scholar 

  25. Valentini F, Oralanducci S, Terranova ML, Amine A, Palleschi G (2004) Sens Actuators B 100:117

    Article  CAS  Google Scholar 

  26. Du D, Huang X, Cai J, Zhang AD, Ding JW, Chen SZ (2007) Anal Bioanal Chem 387:1059

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the Natural Science Foundation of Hubei Province (No. 2006ABA183) and the National Natural Science Foundation of China (No. 20672043).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Du.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, D., Cai, J., Song, D. et al. Rapid determination of triazophos using acetylcholinesterase biosensor based on sol–gel interface assembling multiwall carbon nanotubes. J Appl Electrochem 37, 893–898 (2007). https://doi.org/10.1007/s10800-007-9328-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-007-9328-y

Keywords

Navigation