Skip to main content
Log in

Traveling wave solutions in a plant population model with a seed bank

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We propose an integro-difference equation model to predict the spatial spread of a plant population with a seed bank. The formulation of the model consists of a nonmonotone convolution integral operator describing the recruitment and seed dispersal and a linear contraction operator addressing the effect of the seed bank. The recursion operator of the model is noncompact, which poses a challenge to establishing the existence of traveling wave solutions. We show that the model has a spreading speed, and prove that the spreading speed can be characterized as the slowest speed of a class of traveling wave solutions by using an asymptotic fixed point theorem. Our numerical simulations show that the seed bank has the stabilizing effect on the spatial patterns of traveling wave solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen EJ, Allen LJS, Gilliam X (1996) Dispersal and competition models for plants. J Math Biol 34: 455–481

    Article  MathSciNet  MATH  Google Scholar 

  • Diekmann O, Kaper H (1978) On the bounded solutions of a nonlinear convolution equation. Nonlinear Anal 2: 721–737

    Article  MathSciNet  MATH  Google Scholar 

  • Edelstein-Keshet L (1988) Mathematical models in biology. Random House, New York

    MATH  Google Scholar 

  • Hardin DP, Takac P, Webb GF (1988a) Asymptotic properties of a continuous-space discrete-time population model in a random environment. Bull Math Biol 26: 361–374

    MathSciNet  MATH  Google Scholar 

  • Hardin DP, Takac P, Webb GF (1988b) Dispersion population models discrete in time and space. J Math Biol 28: 1–20

    Article  MathSciNet  Google Scholar 

  • Hastings A, Higgins K (1994) Persistence of transients in spatially structured ecological models. Science 263: 1133–1136

    Article  Google Scholar 

  • Hsu S-B, Zhao X-Q (2008) Spreading speeds and traveling waves for nonmonotone integrodifference equations. SIAM J Math Anal 40: 776–789

    Article  MathSciNet  MATH  Google Scholar 

  • Kot M (1992) Discrete-time traveling waves: ecological examples. J Math Biol 30: 413–436

    Article  MathSciNet  MATH  Google Scholar 

  • Kot M (2001) Elements of mathematical ecology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kot M, Lewis MA, van der Driessche P (1996) Dispersal data and the spread of invading species. Ecology 77: 2027–2042

    Article  Google Scholar 

  • Kot M, Schaffer WM (1986) Discrete-time growth-dispersal models. Math Biosci 80: 109–136

    Article  MathSciNet  MATH  Google Scholar 

  • Kuang JJ, Chesson P (2009) Coexistence of annual plants: generalist seed predation weakens the storage effect. Ecology 90: 170–182

    Article  Google Scholar 

  • Li B, Lewis MA, Weinberger HF (2009) Existence of traveling waves for integral recursions with nonmonotone growth functions. J Math Biol 58: 323–338

    Article  MathSciNet  MATH  Google Scholar 

  • Liang X, Zhao X-Q (2010) Spreading speeds and traveling waves for abstract monostable evolution systems. J Funct Anal 259: 857–903

    Article  MathSciNet  MATH  Google Scholar 

  • Lui R (1982a) A nonlinear integral operator arising from a model in population genetics. I. Monotone initial data. SIAM J Math Anal 13: 913–937

    Article  MathSciNet  Google Scholar 

  • Lui R (1982b) A nonlinear integral operator arising from a model in population genetics. II. Initial data with compact support. SIAM J Math Anal 13: 938–953

    Article  MathSciNet  MATH  Google Scholar 

  • Lui R (1983) Existence and stability of traveling wave solutions of a nonlinear integral operator. J Math Biol 16: 199–220

    Article  MathSciNet  MATH  Google Scholar 

  • MacDonald N, Watkinson AR (1981) Models of an annual plant population with a seedbank. J Theor Biol 93: 643–653

    Article  MathSciNet  Google Scholar 

  • Martin RH (1976) Nonlinear operators and differential equations in Banach spaces. Wiley, New York

    MATH  Google Scholar 

  • Mistro DC, Rodrigue LAD, Ferreira WC Jr (2005) The Africanized honey bee dispersal: a mathematical zoom. Bull Math Biol 67: 281–312

    Article  MathSciNet  Google Scholar 

  • Neubert M, Kot M, Lewis MA (1995) Dispersal and pattern formation in a discrete-time predator-prey model. Theor Popul Biol 48: 7–43

    Article  MATH  Google Scholar 

  • Norghauer JM, Newbery DM (2010) Recruitment limitation after mast-seeding in two African rain forest trees. Ecology 91: 2303–2312

    Article  Google Scholar 

  • Nussbaum RD (1969) The fixed point index and asymptotic fixed point theorem for k-set-contractions. Bull Am Math Soc 75: 490–495

    Article  MathSciNet  MATH  Google Scholar 

  • Pacala SW (1986) Neighborhood models of plant population dynamics. 4. Single-species and multispecies models of annuals with dormant seeds. Am Nat 128: 859–878

    Article  Google Scholar 

  • Rees M (1997) Seed dormancy. In: Crawley MJ (ed) Plant ecology. Blackwell Science, Malden

    Google Scholar 

  • Ritland K (1983) The joint evolution of seed dormancy and flowering time in annual plant living in variable environment. Theor Popul Biol 24: 213–243

    Article  MATH  Google Scholar 

  • Silvermann BW (1986) Density estimation for statistics and data analysis. Chapman and Hall, New York

    Google Scholar 

  • Slatkin M (1973) Gene flow and selection in a cline. Genetics 75: 733–756

    MathSciNet  Google Scholar 

  • Southwood TRE (1978) Ecological methods: with particular reference to the study of insect populations. Chapman and Hall, London

    Google Scholar 

  • Tarter ME, Lock MD (1993) Model-free curve estimation. Chapman and Hall, New York

    Google Scholar 

  • Templeton AR, Levin DA (1979) Evolutionary consequences of seeds pools. Am Nat 114: 232–249

    Article  Google Scholar 

  • Thieme HR (1979) Density-dependent regulation of spatially distributed populations and their asymptotic speed of spread. J Math Biol 8: 173–187

    Article  MathSciNet  MATH  Google Scholar 

  • Titchmarsh EC (1986) Introduction to the theory of Fourier integrals. Chelsea, New York

    Google Scholar 

  • Volkov D, Lui R (2007) Spreading speed and traveling wave solutions of a partially sedentary population. IMA J Appl Math 72: 801–816

    Article  MathSciNet  MATH  Google Scholar 

  • Weinberger HF (1978) Asymptotic behavior of a model in population genetics. In: Chadam JM (ed) Nonlinear partial differential equations and applications. Lecture notes in mathematics, vol 648. Springer, Berlin, pp 47–96

    Google Scholar 

  • Weinberger HF (1982) Long-time behavior of a class of biological models. SIAM J Math Anal 13: 353–396

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingtuan Li.

Additional information

This research was partially supported by the National Science Foundation under Grant DMS-0616445.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, B. Traveling wave solutions in a plant population model with a seed bank. J. Math. Biol. 65, 855–873 (2012). https://doi.org/10.1007/s00285-011-0481-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-011-0481-x

Keywords

Mathematics Subject Classification (2000)

Navigation