Skip to main content
Log in

Dispersion population models discrete in time and continuous in space

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We analyze a discrete-time model of populations that grow and disperse in separate phases. The growth phase is a nonlinear process that allows for the effects of local crowding. The dispersion phase is a linear process that distributes the population throughout its spatial habitat. Our study quantifies the issues of survival and extinction, the existence and stability of nontrivial steady states, and the comparison of various dispersion strategies. Our results show that all of these issues are tied to the global nature of various model parameters. The extreme strategies of staying-in place and going-everywhere-uniformly are compared numerically to diffusion strategies in various contexts. We approach the mathematical analysis of our model from a functional analysis and an operator theory point of view. We use recent results from the theory of positive operators in Banach lattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen, L.: Persistence, extinction, and critical patch number for island population. J. Math. Biol. 24, 617–625 (1987)

    Google Scholar 

  2. Cohen, D., Murray, J. D.: A generalized diffusion model for growth and dispersal in a population. J. Math. Biol. 12, 237–249 (1981)

    Google Scholar 

  3. DeAngelis, D. L., Post, W. M., Travis, C. C.: Positive feedback in natural systems. (Biomathematics, vol. 15). Berlin Heidelberg New York: Springer 1986

    Google Scholar 

  4. Deimling, K.: Nonlinear functional analysis. Berlin Heidelberg New York: Springer 1985

    Google Scholar 

  5. Ellner, S.: Asymptotic behavior of some stochastic difference equation population models. J. Math. Biol. 19, 169–200 (1984)

    Google Scholar 

  6. Gadgil, M.: Dispersal: population consequences and evolution. Ecology 52, 253–261 (1971)

    Google Scholar 

  7. Hamilton, W. D., May, R. M.: Dispersal in stable habitats. Nature 269, 578–581 (1977)

    Google Scholar 

  8. Hardin, D. P., Takáč, P. Webb, G. F.: A comparison of dispersal strategies for survival of spatially heterogeneous populations. SIAM J. Appl. Math. 48, 1396–1423 (1988)

    Google Scholar 

  9. Hardin, D. P., Takáč, P., Webb, G. F.: Asymptotic properties of a continuous-space discrete-time population model in a random environment. J. Math. Biol. 26, 361–374 (1988)

    Google Scholar 

  10. Hörmander, L.: The analysis of linear partial differential operators I. Berlin Heidelberg New York: Springer 1983

    Google Scholar 

  11. Horn, H. L., MacArthur, R. H.: Competition among fugitive species in a harlequin environment. Ecology 53, 749–752 (1972)

    Google Scholar 

  12. Kierstead, H., Slobodkin, L. B.: The size of water masses containing plankton bloom. J. Mar. Res. 12, 141–147 (1953)

    Google Scholar 

  13. Klinkhamer, P. G. L., de Jong, T. J., Metz, J. A. J., Val, J.: Life history tactics of annual organisms: The joint effects of dispersal and delayed germination. Theor. Popul. Biol. 32, 27–156 (1987)

    Google Scholar 

  14. Kot, M.: Diffusion-driven period-doubling bifurcation. Preprint 1987

  15. Kot, M., Schaffer, W. M.: Discrete-time growth-dispersal models. Math. Biosci. 80, 109–136 (1986)

    Google Scholar 

  16. Krasnoselskii, M. A., Zabreiko, P. P.: Geometrical methods of nonlinear analysis. Berlin Heidelberg New York: Springer 1984

    Google Scholar 

  17. Levin, S. A.: Dispersion and population interactions. Am. Natur. 108, 207–228 (1974)

    Google Scholar 

  18. Levin, S. A., Cohen, D., Hastings, A.: Dispersal strategies in patchy environments. Theor. Popul. Biol. 26, 165–191 (1984)

    Google Scholar 

  19. Levin, S. A., Segel, L. A.: Pattern generation in space and aspect. SIAM Rev. 27, 45–67 (1985)

    Google Scholar 

  20. MacArthur, R. H., Wilson, E. O.: The theory of island biogeography. Princeton: Princeton University Press 1967

    Google Scholar 

  21. Martin, R. H.: Nonlinear operators and differential equations in Banach spaces. New York: Wiley 1976

    Google Scholar 

  22. McMurtrie, R.: Persistence and stability of single-species and prey-predator systems in spatially heterogeneous environments. Math. Biosci. 39, 11–51 (1978)

    Google Scholar 

  23. Okubo, A.: Diffusion and ecological problems: Mathematical models (Biomathematics, vol. 10). Berlin Heidelberg New York: Springer 1980

    Google Scholar 

  24. Rudin, W.: Real and complex analysis. New York: McGraw-Hill 1974

    Google Scholar 

  25. Rudin, W.: Functional analysis. New York: McGraw-Hill 1973

    Google Scholar 

  26. Schaefer, H. H.: Topological vector spaces. Berlin Heidelberg New York: Springer 1971

    Google Scholar 

  27. Schaefer, H. H.: Banach lattices and positive operators. Berlin Heidelberg New York: Springer 1974

    Google Scholar 

  28. Skellam, J. G.: Random dispersal in theoretical populations. Biometrika 38, 196–218 (1951)

    Google Scholar 

  29. Takáč, P.: The local stability of positive solutions to the Hammerstein equation with a nonmonotonic Nemytskii operator. Mh. Math. 106, 313–335 (1988)

    Google Scholar 

  30. Vance, R. R.: The effect of dispersal on population stability in one-species, discrete-space population growth models. Am. Natur. 123, 230–254 (1984)

    Google Scholar 

  31. Yosida, K.: Functional analysis, 3rd edn. Berlin Heidelberg New York: Springer 1971

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hardin, D.P., Takáč, P. & Webb, G.F. Dispersion population models discrete in time and continuous in space. J. Math. Biol. 28, 1–20 (1990). https://doi.org/10.1007/BF00171515

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00171515

Key words

Navigation