Skip to main content

Advertisement

Log in

Stochastic modelling of biased cell migration and collagen matrix modification

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Matrix dynamics plays a crucial role in several physiological and pathological processes. In this paper we develop a model framework, which describes the temporal fibre network evolution depending on the influence of migrating fibroblasts. The cells are regarded as discrete objects in the plane, whose velocities are determined by a generalised Langevin equation. For its solution we verify existence and uniqueness. The courses of the trajectories are affected by two external impulses, chemotaxis and contact guidance, respectively. The extracellular matrix is described by a continuous vector field which contains both information on density and orientation of the fibrous material. Modelling dynamic interaction between the discrete and the continuum variables is an essential point of this paper. In particular, the smoothing of the fluctuating paths plays a key role. Besides a detailed description of the formulated equations, we also supply the condensed pseudo code of the algorithm. We investigate several examples and present results both from artificial and real data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amyot F, Small A, Boukari H, Sackett D, Elliott J, McDaniel D, Plant A, Gandjbakhche A (2008) Thin films of oriented collagen fibrils for cell motility studies. J Biomed Mater Res Part B Appl Biomater 86(2): 438–443

    Article  Google Scholar 

  • Arnold L (1973) Stochastische differentialgleichungen, 1st edn. R. Oldenbourg, München, Wien

    MATH  Google Scholar 

  • Barocas VH, Tranquillo RT (1997) An anisotropic biphasic theory of tissue-equivalent mechanics: the interplay among cell traction, fibrillar network deformation, fibril alignment, and cell contact guidance. J Biomech Eng 119(2): 137–145

    Article  Google Scholar 

  • Bray D (2001) Cell movements: from molecules to motility, 2nd edn. Garland, New York

    Google Scholar 

  • Capasso V, Morale D (2009) Stochastic modelling of tumour-induced angiogenesis. J Math Biol 58: 219–233

    Article  MathSciNet  MATH  Google Scholar 

  • Carter S (1965) Principles of cell motility: the direction of cell movement and cancer invasion. Nature 208(5016): 1183–1187

    Article  Google Scholar 

  • Chaudhuri S, Nguyen H, Rangayyan RM, Walsh S, Frank CB (1987) A Fourier domain directional filtering method for analysis of collagen alignment in ligaments. IEEE Trans Biomed Eng 34(7): 509–518

    Article  Google Scholar 

  • Chen CS, Tan J, Tien J (2004) Mechanotransduction at cell-matrix and cell-cell contacts. Ann Rev Biomed Eng 6(1): 275–302

    Article  Google Scholar 

  • Clark RAF (1993) Biology of dermal wound repair. Dermatol Clin 11: 647–666

    Google Scholar 

  • Dale PD, Sherratt JA, Maini PK (1997) Role of fibroblast migration in collagen fiber formation during fetal and adult dermal wound healing. Bull Math Biol 59: 1077–1100

    Article  MATH  Google Scholar 

  • Dallon JC (2000) Numerical aspects of discrete and continuum hybrid models in cell biology. Appl Numer Math 32: 137–159

    Article  MathSciNet  MATH  Google Scholar 

  • Dallon JC, Sherratt JA (1998) A mathematical model for fibroblast and collagen orientation. Bull Math Biol 60(1): 101–129

    Article  MATH  Google Scholar 

  • Dallon JC, Sherratt JA (2000) A mathematical model for spatially varying extracellular matrix alignment. SIAM J Appl Math 61(2): 506–527

    Article  MathSciNet  MATH  Google Scholar 

  • Dallon JC, Sherratt JA, Maini PK (1999) Mathematical modelling of extracellular matrix dynamics using discrete cells: fibre orientation and tissue regeneration. J Theor Biol 199: 449–471

    Article  Google Scholar 

  • Dallon JC, Sherratt JA, Maini PK, Ferguson M (2000) Biological implications of a discrete mathematical model for collagen deposition and alignment in dermal wound repair. IMA J Math Med Biol 17: 379–393

    Article  MATH  Google Scholar 

  • Dickinson RB, Tranquillo RT (1993) A stochastic model for adhesion-mediated cell random motility and haptotaxis. J Math Biol 31: 563–600

    Article  MATH  Google Scholar 

  • Dunn GA, Brown AF (1987) A unified approach to analysing cell motility. J Cell Sci Suppl 8: 81–102

    Google Scholar 

  • Even-Ram S, Yamada KM (2005) Cell migration in 3d matrix. Curr Opin Cell Biol 17(5): 524–532

    Article  Google Scholar 

  • Fisher PR, Merkl R, Gerisch G (1989) Quantitative analysis of cell motility and chemotaxis in Dictyostelium discoideum by using an image processing system and a novel chemotaxis chamber providing stationary chemical gradients. J Cell Biol 108(3): 973–984

    Article  Google Scholar 

  • Friedl P, Bröcker EB (2000) The biology of cell locomotion within three-dimensional extracellular matrix. Cell Mol Life Sci 57(1): 41–61

    Article  Google Scholar 

  • Girton TS, Dubey N, Tranquillo RT (1999) Magnetic-induced alignment of collagen fibrils in tissue equivalents. In: Tissue engineering methods and protocols, no. 18 in methods in molecular Medicine, 1st edn., chap. 1. Materials. Humana Press, Totowa

  • Gleiber WE, Schiffmann E (1984) Identification of a chemoattractant for fibroblasts produced by human breast carcinoma cell lines. Cancer Res 44(8): 3398–3402

    Google Scholar 

  • Gregoire M, Lieubeau B (1995) The role of fibroblasts in tumor behavior. Cancer Metastasis Rev 14(4): 339–350

    Article  Google Scholar 

  • Guido S, Tranquillo RT (1993) A methodology for the systematic and quantitative study of cell contact guidance in oriented collagen gels. Correlation of fibroblast orientation and gel birefringence. J Cell Sci 105(2): 317–331

    Google Scholar 

  • Hadeler KP, Hillen T, Lutscher F (2004) The Langevin or Kramers approach to biological modeling. Math Models Methods Appl Sci 14(10): 1561–1583

    Article  MathSciNet  MATH  Google Scholar 

  • Harris AK, Stopak D, Wild P (1981) Fibroblast traction as a mechanism for collagen morphogenesis. Nature 290: 249–251

    Article  Google Scholar 

  • Hauptmann S, Siegert A, Berger S, Denkert C, Köbel M, Ott S, Siri A, Borsi L (2003) Regulation of cell growth and the expression of extracellular matrix proteins in colorectal adenocarcinoma: a fibroblast-tumor cell coculture model to study tumor-host interactions in vitro. Eur J Cell Biol 82(1): 1–8

    Article  Google Scholar 

  • Ionides EL (2001) Statistical analysis of cell motion. Ph.D. thesis, University of California, Berkley

  • Ionides EL, Fang KS, Isseroff RR, Oster GF (2004) Stochastic models of cell motion and taxis. J Math Biol 48: 23–37

    Article  MathSciNet  MATH  Google Scholar 

  • Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6(5): 392–401

    Article  Google Scholar 

  • Kloeden PE, Platen E (1999) Numerical solution of stochastic differential equations, 3 edn. No. 23 in applications of mathematics, stochastic modelling and applied probability. Springer, Berlin, Heidelberg

  • Knapp DM, Helou EF, Tranquillo RT (1999) A fibrin or collagen gel assay for tissue cell chemotaxis: assessment of fibroblast chemotaxis to grgdsp. Exp Cell Res 247(2): 543–553

    Article  Google Scholar 

  • Landes CA, Weichert F, Philipp, Helga F, Wagner M (2006) Evaluation of two 3D virtual computer reconstructions for comparison of cleft lip and palate to normal fetal microanatomy. The anatomical record part A: discoveries in molecular, cellular, and evolutionary biology, vol 288. Wiley, New York, pp 248–262. http://www3.interscience.wiley.com/journal/112394892/abstract?CRETRY=1&SRETRY=0

  • Lo CM, Wang HB, Dembo M, Wang YL (2000) Cell movement Is guided by the rigidity of the substrate. Biophys J 79: 144–152

    Article  Google Scholar 

  • Lubkin SR, Jackson TL (2002) Multiphase mechanics of capsule formation in tumors. J Biomech Eng 124: 237–243

    Article  Google Scholar 

  • Mantzaris NV, Webb S, Othmer HG (2004) Mathematical modelling of tumor-induced angiogenesis. J Math Biol 49(2): 111–187

    Article  MathSciNet  MATH  Google Scholar 

  • McCarthy JB, Vachhani B, Iida J (1996) Cell adhesion to collagenous matrices. Pept Sci 40(4): 371–381

    Google Scholar 

  • McDougall S, Dallon JC, Sherratt JA, Maini PK (2006) Fibroblast migration and collagen deposition during dermal wound healing: mathematical modelling and clinical implications. Philos Trans R Soc A Math Phys Eng Sci 364(1843): 1385–1405

    Article  MathSciNet  Google Scholar 

  • Øksendal B (1998) Stochastic differential equations, 5th edn. Universitext. Springer, Berlin

  • Olsen L, Maini PK, Sherratt JA, Dallon J (1999) Mathematical modelling of anisotropy in fibrous connective tissue. Math Biosci 158(2): 145–170

    Article  MATH  Google Scholar 

  • Olsen L, Maini PK, Sherratt JA, Marchant B (1998) Simple modelling of extracellular matrix alignment in dermal wound healing i. cell flux induced alignment. Comput Math Methods Med 1: 175–192

    Article  MATH  Google Scholar 

  • Oppenheim AV, Schafer RW (1975) Digital signalprocessing. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Palsson E (2001) A three-dimensional model of cell movement in multicellular systems. Future Gener Comput Syst 17(7): 835–852

    Article  MATH  Google Scholar 

  • Postlethwaite AE, Keski-Oja J, Balian G, Kang AH (1981) Induction of fibroblast chemotaxis by fibronectin. Localization of the chemotactic region to a 140,000-molecular weight non-gelatin-binding fragment. J Exp Med 153: 494–499

    Article  Google Scholar 

  • Schienbein M, Franke K, Gruler H (1994) Random walk and directed movement: comparison between inert particles and self- organized molecular machines. Phys Rev 49(6): 5462–5471

    Google Scholar 

  • Schienbein M, Gruler H (1993) Langevin equation, fokker-planck equation and cell migration. Bull Math Biol 55(3): 585–608

    MATH  Google Scholar 

  • Stokes CL, Lauffenburger DA (1991) Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis. J Theor Biol 152: 377–403

    Article  Google Scholar 

  • Stokes CL, Lauffenburger DA (1991) Migration of individual microvessel endothelial cells: stochastic model and parameter measurement. J Cell Sci 99: 419–430

    Google Scholar 

  • Strikwerda JC (1989) Finite difference schemes and partial differential equations. Chapman & Hall/CRC, Boca Raton

    MATH  Google Scholar 

  • Thibault MM, Hoemann CD, Buschmann MD (2007) Fibronectin, vitronectin, and collagen I induce chemotaxis and haptotaxis of human and rabbit mesenchymal stem cells in a standardized transmembrane assay. Stem Cells Dev 16: 489–502

    Article  Google Scholar 

  • van Kempen LC, Rijntjes J, Claes A, Blokx WA, Gerritsen MJP, van Muijen DJRGN (2004) Type I collagen synthesis parallels the conversion of keratinocytic intraepidermal neoplasia to cutaneous squamous cell carcinoma. J Pathol 204(3): 333–339

    Article  Google Scholar 

  • Wells A, Ware MF, Allen FD, Lauffenburger DA (1999) Shaping up for shipping out: PLCγ signaling of morphology changes in EGF-stimulated fibroblast migration. Cell Motil Cytoskelet 44(4): 227–233

    Article  Google Scholar 

  • Zicha D, Dunn GA, Brown AF (1991) A new direct-viewing chemotaxis chamber. J Cell Sci 99(4): 769–775

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Groh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Groh, A., Louis, A.K. Stochastic modelling of biased cell migration and collagen matrix modification. J. Math. Biol. 61, 617–647 (2010). https://doi.org/10.1007/s00285-009-0314-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-009-0314-3

Keywords

Mathematics Subject Classification (2000)

Navigation