Skip to main content
Log in

Stochastic modelling of tumour-induced angiogenesis

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

A major source of complexity in the mathematical modelling of an angiogenic process derives from the strong coupling of the kinetic parameters of the relevant stochastic branching-and-growth of the capillary network with a family of interacting underlying fields. The aim of this paper is to propose a novel mathematical approach for reducing complexity by (locally) averaging the stochastic cell, or vessel densities in the evolution equations of the underlying fields, at the mesoscale, while keeping stochasticity at lower scales, possibly at the level of individual cells or vessels. This method leads to models which are known as hybrid models. In this paper, as a working example, we apply our method to a simplified stochastic geometric model, inspired by the relevant literature, for a spatially distributed angiogenic process. The branching mechanism of blood vessels is modelled as a stochastic marked counting process describing the branching of new tips, while the network of vessels is modelled as the union of the trajectories developed by tips, according to a system of stochastic differential equations à la Langevin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., Capasso, V., Villa, E.: On the approximation of geometric densities of random closed sets. RICAM Report N. 2006-14, Linz, Austria (2006)

  2. Anderson A.R.A., Chaplain M.A.J.: Continuous and discrete mathematical models of tumour-induced angiogenesis. Bull. Math. Biol. 60, 857900 (1998)

    Article  Google Scholar 

  3. Anderson A.R.A., Chaplain M.A.J., Newman E.L., Steele R.J.C., Thompson A.M.: Mathematical modelling of tumour invasion and metastasis. J. Theor. Med. 2, 129154 (2000)

    Google Scholar 

  4. Birdwell C., Brasier A., Taylor L.: Two-dimensional peptide mapping of fibronectin from bovine aortic endothelial cells and bovine plasma. Biochem. Biophys. Res. Commun. 97, 574581 (1980)

    Article  Google Scholar 

  5. Burger M., Capasso V., Pizzocchero L: Mesoscale averaging of nucleation and growth models. Multiscale Model Simul. SIAM Interdiscip. J. 5, 564–592 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Byrne H., Chaplain M.: Mathematical models for tumour angiogenesis: numerical simulations and nonlinear wave solutions. Bull. Math. Biol. 57, 461486 (1995)

    Google Scholar 

  7. Capasso, V., Morale, D., Salani, C.: Polymer crystallization processes via many particle systems. In: Capasso, V. (ed.) Mathematical Modelling for Polymer Processing: Polymerization, Crystallization, Manufacturing. Springer, Heidelberg (2000)

  8. Capasso V., Villa E.: On mean densities of inhomogeneous geometric processes arising in material science and medicine. Image Anal. Stereol. 26, 23–36 (2007)

    MATH  MathSciNet  Google Scholar 

  9. Chaplain M., Stuart A.: A model mechanism for the chemotactic response of endothelial cells to tumour angiogenesis factor. IMA J. Math. Appl. Med. Biol. 10, 149168 (1993)

    Article  Google Scholar 

  10. Chaplain M.: The mathematical modelling of tumour angiogenesis and invasion. Acta Biotheor. 43, 387402 (1995)

    Article  Google Scholar 

  11. Chaplain, M.A.J., Anderson, A.R.A.: Modelling the growth and form of capillary networks. In: Chaplain, M.A.J., et al. (eds.) On Growth and Form: Spatio-temporal Pattern Formation in Biology, Wiley, Chichester (1999)

  12. Cooke R.: Dr. Folkman’s War: Angiogenesis and the Struggle to Defeat Cancer. Random House, New York (2001)

    Google Scholar 

  13. Corada M., Zanetta L., Orsenigo F., Breviario F., Lampugnani M.G., Bernasconi S., Liao F., Hicklin D.J., Bohlen P., Dejana E.: A monoclonal antibody to vascular endothelial-cadherin inhibits tumor angiogenesis without side effects on endothelial permeability. Blood 100, 905–911 (2002)

    Article  Google Scholar 

  14. Davis B.: Reinforced random walk. Probab. Theor. Relat. Fields 84, 20322 (1990)

    Article  Google Scholar 

  15. Folkman J.: Tumour angiogenesis. Adv. Cancer Res. 19, 331358 (1974)

    Google Scholar 

  16. Folkman J., Klagsbrun M.: Angiogenic factors. Science 235, 442–447 (1987)

    Article  Google Scholar 

  17. Jain R.K., Carmeliet P.F.: Vessels of Death or Life. Sci. Am. 285, 38–45 (2001)

    Article  Google Scholar 

  18. Levine H.A., Sleeman B.D., Nilsen-Hamilton M.: Mathematical modelling of the onset of capillary formation initiating angiogenesis. J. Math. Biol. 42, 195238 (2001)

    Article  MathSciNet  Google Scholar 

  19. Liotta L., Saidel G., Kleinerman J.: Diffusion model of tumor vascularization. Bull. Math. Biol. 39, 117128 (1977)

    Google Scholar 

  20. Morale D., Capasso V., K.: An interacting particle system modelling aggregation behavior:from individuals to populations. J. Math. Biol. 50, 49–66 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Oelschläger K.: On the derivation of reaction-diffusion equations as limit dynamics of systems of moderately interacting stochastic processes. Probab. Theor. Relat. Fields 82, 565–586 (1989)

    Article  MATH  Google Scholar 

  22. Orme M., Chaplain M.: A mathematical model of the first steps of tumour-related angiogenesis: capillary sprout formation and secondary branching. IMA J. Math. Appl. Med. 14, 189205 (1996)

    Google Scholar 

  23. Plank M.J., Sleeman B.D.: A reinforced random walk model of tumour angiogenesis and anti- angiogenic strategies. IMA J. Math. Med. Biol. 20, 135181 (2003)

    Google Scholar 

  24. Plank M.J., Sleeman B.D.: Lattice and non-lattice models of tumour angiogenesis. Bull. Math. Biol. 66(6), 1785–1819 (2004)

    Article  MathSciNet  Google Scholar 

  25. McDougall S.R., Anderson A.R.A., Chaplain M.A.J.: Mathematical modelling of dynamic tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies. J. Theor. Biol. 241, 564–589 (2006)

    Article  MathSciNet  Google Scholar 

  26. Schweitzer F.: Brownian Agents and Active Particles. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  27. Stéphanou A., McDougall S.R., Anderson A.R.A., Chaplain M.A.J.: Mathematical modelling of the influence of blood rheological properties upon adaptative tumour-induced angiogenesis. Math. Comput. Model. 44(1–), 96–123 (2006)

    Article  MATH  Google Scholar 

  28. Stokes C.L., Lauffenburger D.A.: Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis. J. Theor. Biol. 152, 377–403 (1991)

    Article  Google Scholar 

  29. Sun S., Wheeler M.F., Obeyesekere M., Patrick C.W. Jr: A multiscale angiogenesis modeling using mixed finite element methods. SIAM J. Multiscale Model. Simul. 4(4), 1137–1167 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Capasso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capasso, V., Morale, D. Stochastic modelling of tumour-induced angiogenesis. J. Math. Biol. 58, 219–233 (2009). https://doi.org/10.1007/s00285-008-0193-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-008-0193-z

Keywords

Mathematics Subject Classification (2000)

Navigation